A316407 Number of multisets of exactly six nonempty binary words with a total of n letters such that no word has a majority of 0's.
1, 3, 10, 33, 98, 291, 826, 2284, 6185, 16471, 43156, 111446, 284517, 717486, 1793081, 4434929, 10887761, 26495243, 64069055, 153761086, 366992020, 870215947, 2053484109, 4818104922, 11256015936, 26164409278, 60583174348, 139655557194, 320805463602
Offset: 6
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 6..1000
Programs
-
Maple
g:= n-> 2^(n-1)+`if`(n::odd, 0, binomial(n, n/2)/2): b:= proc(n, i) option remember; series(`if`(n=0 or i=1, x^n, add( binomial(g(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)), x, 7) end: a:= n-> coeff(b(n$2), x, 6): seq(a(n), n=6..34);
Formula
a(n) = [x^n y^6] 1/Product_{j>=1} (1-y*x^j)^A027306(j).