A316409 Number of multisets of exactly eight nonempty binary words with a total of n letters such that no word has a majority of 0's.
1, 3, 10, 33, 98, 291, 826, 2320, 6342, 17133, 45504, 119580, 310416, 798196, 2033289, 5136803, 12878647, 32056022, 79277444, 194822462, 476101571, 1156995495, 2797803485, 6731961588, 16126628466, 38459836055, 91355046531, 216126089962, 509445131238
Offset: 8
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 8..1000
Programs
-
Maple
g:= n-> 2^(n-1)+`if`(n::odd, 0, binomial(n, n/2)/2): b:= proc(n, i) option remember; series(`if`(n=0 or i=1, x^n, add( binomial(g(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)), x, 9) end: a:= n-> coeff(b(n$2), x, 8): seq(a(n), n=8..36);
Formula
a(n) = [x^n y^8] 1/Product_{j>=1} (1-y*x^j)^A027306(j).