A316410 Number of multisets of exactly nine nonempty binary words with a total of n letters such that no word has a majority of 0's.
1, 3, 10, 33, 98, 291, 826, 2320, 6342, 17188, 45684, 120435, 313280, 808581, 2065885, 5241557, 13191343, 32992806, 81964072, 202499115, 497418503, 1215823396, 2956890329, 7159215090, 17256728038, 41428552721, 99060756883, 235997525351, 560191343126
Offset: 9
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 9..1000
Programs
-
Maple
g:= n-> 2^(n-1)+`if`(n::odd, 0, binomial(n, n/2)/2): b:= proc(n, i) option remember; series(`if`(n=0 or i=1, x^n, add( binomial(g(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)), x, 10) end: a:= n-> coeff(b(n$2), x, 9): seq(a(n), n=9..37);
Formula
a(n) = [x^n y^9] 1/Product_{j>=1} (1-y*x^j)^A027306(j).