A316411 Number of multisets of exactly ten nonempty binary words with a total of n letters such that no word has a majority of 0's.
1, 3, 10, 33, 98, 291, 826, 2320, 6342, 17188, 45750, 120655, 314335, 812161, 2078985, 5283157, 13326283, 33400066, 83195864, 206069915, 507722068, 1244740868, 3037497201, 7379529734, 17854498058, 43026654989, 103302756909, 247127149283, 589196413579
Offset: 10
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 10..1000
Programs
-
Maple
g:= n-> 2^(n-1)+`if`(n::odd, 0, binomial(n, n/2)/2): b:= proc(n, i) option remember; series(`if`(n=0 or i=1, x^n, add( binomial(g(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)), x, 11) end: a:= n-> coeff(b(n$2), x, 10): seq(a(n), n=10..38);
Formula
a(n) = [x^n y^10] 1/Product_{j>=1} (1-y*x^j)^A027306(j).