A316439 Irregular triangle where T(n,k) is the number of factorizations of n into k factors > 1, with k ranging from 1 to Omega(n).
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 3, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 3
Offset: 1
Examples
The factorizations of 24 are (2*2*2*3), (2*2*6), (2*3*4), (2*12), (3*8), (4*6), (24) so the 24th row is {1, 3, 2, 1}. Triangle begins: {} 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 3 2 1 1 1 1 1 1 1 1 1 2 1 1 1 3 1
Links
- Alois P. Heinz, Rows n = 1..20000, flattened
Crossrefs
Programs
-
Maple
g:= proc(n, k) option remember; `if`(n>k, 0, x)+ `if`(isprime(n), 0, expand(x*add(`if`(d>k, 0, g(n/d, d)), d=numtheory[divisors](n) minus {1, n}))) end: T:= n-> `if`(n=1, [][], (p-> seq(coeff(p, x, i) , i=1..degree(p)))(g(n$2))): seq(T(n), n=1..50); # Alois P. Heinz, Aug 11 2019
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Table[Length[Select[facs[n],Length[#]==k&]],{n,100},{k,PrimeOmega[n]}]