A316468 Matula-Goebel numbers of locally stable rooted trees, meaning no branch is a submultiset of any other branch of the same root.
1, 2, 3, 4, 5, 7, 8, 9, 11, 15, 16, 17, 19, 23, 25, 27, 31, 32, 33, 35, 45, 47, 49, 51, 53, 55, 59, 64, 67, 69, 75, 77, 81, 83, 85, 93, 95, 97, 99, 103, 119, 121, 125, 127, 128, 131, 135, 137, 141, 149, 153, 155, 161, 165, 175, 177, 187, 197, 201, 207, 209
Offset: 1
Keywords
Examples
Sequence of locally stable rooted trees preceded by their Matula-Goebel numbers begins: 1: o 2: (o) 3: ((o)) 4: (oo) 5: (((o))) 7: ((oo)) 8: (ooo) 9: ((o)(o)) 11: ((((o)))) 15: ((o)((o))) 16: (oooo) 17: (((oo))) 19: ((ooo)) 23: (((o)(o))) 25: (((o))((o))) 27: ((o)(o)(o)) 31: (((((o)))))
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[100],Or[#==1,And[Select[Tuples[primeMS[#],2],UnsameQ@@#&&Divisible@@#&]=={},And@@#0/@primeMS[#]]]&]
Comments