A316469 Matula-Goebel numbers of unlabeled rooted identity RPMG-trees, meaning the Matula-Goebel numbers of the branches of any non-leaf node are relatively prime.
1, 2, 6, 26, 78, 202, 606, 794, 2382, 2462, 2626, 7386, 7878, 8914, 10322, 12178, 26742, 30966, 32006, 36534, 42374, 43954, 47206, 80194, 96018, 115882, 127122, 131862, 141618, 149782, 158314, 160978, 184622, 217058, 240582, 248662, 260422, 347646, 449346
Offset: 1
Keywords
Examples
78 = prime(1)*prime(2)*prime(6) belongs to the sequence because the indices {1,2,6} are relatively prime, distinct, and already belong to the sequence. The sequence of all identity RPMG-trees preceded by their Matula-Goebel numbers begins: 1: o 2: (o) 6: (o(o)) 26: (o(o(o))) 78: (o(o)(o(o))) 202: (o(o(o(o)))) 606: (o(o)(o(o(o)))) 794: (o(o(o)(o(o)))) 2382: (o(o)(o(o)(o(o)))) 2462: (o(o(o(o(o))))) 2626: (o(o(o))(o(o(o)))) 7386: (o(o)(o(o(o(o))))) 7878: (o(o)(o(o))(o(o(o))))
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[1000],Or[#==1,And[SquareFreeQ[#],GCD@@primeMS[#]==1,And@@#0/@primeMS[#]]]&]
Comments