A316495 Matula-Goebel numbers of locally disjoint unlabeled rooted trees, meaning no branch overlaps any other (unequal) branch of the same root.
1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 43, 44, 45, 47, 48, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 64, 66, 67, 68, 70, 71, 72, 74, 75, 76, 77, 79, 80, 82, 85
Offset: 1
Keywords
Examples
The sequence of all locally disjoint rooted trees preceded by their Matula-Goebel numbers begins: 1: o 2: (o) 3: ((o)) 4: (oo) 5: (((o))) 6: (o(o)) 7: ((oo)) 8: (ooo) 10: (o((o))) 11: ((((o)))) 12: (oo(o)) 13: ((o(o))) 14: (o(oo)) 15: ((o)((o))) 16: (oooo) 17: (((oo))) 18: (o(o)(o)) 19: ((ooo)) 20: (oo((o)))
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; go[n_]:=Or[n==1,And[Or[PrimeQ[n],CoprimeQ@@Union[primeMS[n]]],And@@go/@primeMS[n]]]; Select[Range[100],go]
Comments