A316506 a(n) is the rank of the multiplicative group of Gaussian integers modulo n.
0, 1, 1, 2, 2, 2, 1, 3, 2, 3, 1, 3, 2, 2, 3, 3, 2, 2, 1, 4, 2, 2, 1, 4, 2, 3, 2, 3, 2, 4, 1, 3, 2, 3, 3, 3, 2, 2, 3, 5, 2, 3, 1, 3, 3, 2, 1, 4, 2, 3, 3, 4, 2, 2, 3, 4, 2, 3, 1, 5, 2, 2, 3, 3, 4, 3, 1, 4, 2, 4, 1, 4, 2, 3, 3, 3, 2, 4, 1, 5, 2, 3, 1, 4, 4, 2, 3
Offset: 1
Keywords
Examples
(Z[i]/1Z[i])* = C_1 (has rank 0); (Z[i]/2Z[i])* = C_2 (has rank 1); (Z[i]/3Z[i])* = C_8 (has rank 1); (Z[i]/4Z[i])* = C_2 X C_4 (has rank 2); (Z[i]/5Z[i])* = C_4 X C_4 (has rank 2); (Z[i]/6Z[i])* = C_2 X C_8 (has rank 2); (Z[i]/7Z[i])* = C_48 (has rank 1); (Z[i]/8Z[i])* = C_2 X C_4 X C_4 (has rank 3); (Z[i]/9Z[i])* = C_3 X C_24 (has rank 2); (Z[i]/10Z[i])* = C_2 X C_4 X C_4 (has rank 3).
Links
Crossrefs
Programs
-
PARI
rad(n) = factorback(factorint(n)[, 1]); grad(n)= { my(r=1, f=factor(n)); for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]); if(p==2&e==1, r*=2); if(p==2&e==2, r*=4); if(p==2&e>=3, r*=8); if(p%4==1, r*=(rad(p-1))^2); if(p%4==3&e==1, r*=rad(p^2-1)); if(p%4==3&e>=2, r*=p^2*rad(p^2-1)); ); return(r); } a(n)=if(n>1, vecmax(factor(grad(n))[, 2]), 0);
Formula
Let p be an odd prime, then: a(p^e) = 2 if p == 1 (mod 4) or p == 3 (mod 4), e >= 2; a(p) = 1 if p == 3 (mod 4). a(2) = 1, a(4) = 2, a(2^e) = 3 for e >= 3.
Comments