cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A316496 Number of totally strong integer partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 8, 8, 12, 13, 18, 20, 27, 27, 38, 41, 52, 56, 73, 77, 99, 105, 129, 145, 176, 186, 229, 253, 300, 329, 395, 427, 504, 555, 648, 716, 836, 905, 1065, 1173, 1340, 1475, 1703, 1860, 2140, 2349, 2671, 2944, 3365, 3666, 4167, 4582, 5160, 5668
Offset: 0

Views

Author

Gus Wiseman, Jul 29 2018

Keywords

Comments

An integer partition is totally strong if either it is empty, equal to (1), or its run-lengths are weakly decreasing (strong) and are themselves a totally strong partition.

Examples

			The a(1) = 1 through a(8) = 12 totally strong partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (1111)  (221)    (51)      (61)       (62)
                            (11111)  (222)     (331)      (71)
                                     (321)     (421)      (332)
                                     (2211)    (2221)     (431)
                                     (111111)  (1111111)  (521)
                                                          (2222)
                                                          (3311)
                                                          (22211)
                                                          (11111111)
For example, the partition (3,3,2,1) has run-lengths (2,1,1), which are weakly decreasing, but they have run-lengths (1,2), which are not weakly decreasing, so (3,3,2,1) is not totally strong.
		

Crossrefs

The Heinz numbers of these partitions are A316529.
The version for compositions is A332274.
The dual version is A332275.
The version for reversed partitions is (also) A332275.
The narrowly normal version is A332297.
The alternating version is A332339 (see also A317256).
Partitions with weakly decreasing run-lengths are A100882.

Programs

  • Mathematica
    totincQ[q_]:=Or[q=={},q=={1},And[GreaterEqual@@Length/@Split[q],totincQ[Length/@Split[q]]]];
    Table[Length[Select[IntegerPartitions[n],totincQ]],{n,0,30}]

Extensions

Updated with corrected terminology by Gus Wiseman, Mar 07 2020

A332832 Heinz numbers of integer partitions whose negated first differences (assuming the last part is zero) are not unimodal.

Original entry on oeis.org

12, 20, 24, 28, 36, 40, 44, 45, 48, 52, 56, 60, 63, 68, 72, 76, 80, 84, 88, 90, 92, 96, 99, 100, 104, 108, 112, 116, 117, 120, 124, 126, 132, 135, 136, 140, 144, 148, 152, 153, 156, 160, 164, 165, 168, 171, 172, 175, 176, 180, 184, 188, 189, 192, 195, 196, 198
Offset: 1

Views

Author

Gus Wiseman, Mar 02 2020

Keywords

Comments

First differs from A065201 in having 165.
First differs from A316597 in having 36.
A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
   12: {1,1,2}
   20: {1,1,3}
   24: {1,1,1,2}
   28: {1,1,4}
   36: {1,1,2,2}
   40: {1,1,1,3}
   44: {1,1,5}
   45: {2,2,3}
   48: {1,1,1,1,2}
   52: {1,1,6}
   56: {1,1,1,4}
   60: {1,1,2,3}
   63: {2,2,4}
   68: {1,1,7}
   72: {1,1,1,2,2}
   76: {1,1,8}
   80: {1,1,1,1,3}
   84: {1,1,2,4}
   88: {1,1,1,5}
   90: {1,2,2,3}
For example, 60 is the Heinz number of (3,2,1,1), with negated 0-appended first-differences (1,1,0,1), which are not unimodal, so 60 is in the sequence.
		

Crossrefs

The non-negated version is A332287.
The version for of run-lengths (instead of differences) is A332642.
The enumeration of these partitions by sum is A332744.
Unimodal compositions are A001523.
Non-unimodal compositions are A115981.
Heinz numbers of partitions with non-unimodal run-lengths are A332282.
Partitions whose 0-appended first differences are unimodal are A332283.
Compositions whose negation is unimodal are A332578.
Compositions whose negation is not unimodal are A332669.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Select[Range[100],!unimodQ[Differences[Prepend[primeMS[#],0]]]&]

A316529 Heinz numbers of totally strong integer partitions.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83
Offset: 1

Views

Author

Gus Wiseman, Jul 29 2018

Keywords

Comments

First differs from A304678 at a(115) = 151, A304678(115) = 150.
The alternating version first differs from this sequence in having 150 and lacking 450.
An integer partition is totally strong if either it is empty, equal to (1), or its run-lengths are weakly decreasing (strong) and are themselves a totally strong partition.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			Starting with (3,3,2,1), which has Heinz number 150, and repeatedly taking run-lengths gives (3,3,2,1) -> (2,1,1) -> (1,2), so 150 is not in the sequence.
Starting with (3,3,2,2,1), which has Heinz number 450, and repeatedly taking run-lengths gives (3,3,2,2,1) -> (2,2,1) -> (2,1) -> (1,1) -> (2) -> (1), so 450 is in the sequence.
		

Crossrefs

The enumeration of these partitions by sum is A316496.
The complement is A316597.
The widely normal version is A332291.
The dual version is A335376.
Partitions with weakly decreasing run-lengths are A100882.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    totstrQ[q_]:=Or[q=={},q=={1},And[GreaterEqual@@Length/@Split[q],totstrQ[Length/@Split[q]]]];
    Select[Range[100],totstrQ[Reverse[primeMS[#]]]&]

Extensions

Updated with corrected terminology by Gus Wiseman, Mar 08 2020

A335377 Heinz numbers of non-totally co-strong integer partitions.

Original entry on oeis.org

18, 50, 54, 60, 75, 84, 90, 98, 108, 120, 126, 132, 140, 147, 150, 156, 162, 168, 198, 204, 220, 228, 234, 240, 242, 245, 250, 260, 264, 270, 276, 280, 294, 300, 306, 308, 312, 315, 324, 336, 338, 340, 342, 348, 350, 363, 364, 372, 375, 378, 380, 408, 414, 420
Offset: 1

Views

Author

Gus Wiseman, Jun 05 2020

Keywords

Comments

A sequence is totally co-strong if it is empty, equal to (1), or its run-lengths are weakly increasing (co-strong) and are themselves a totally co-strong sequence.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
   18: {1,2,2}        156: {1,1,2,6}        276: {1,1,2,9}
   50: {1,3,3}        162: {1,2,2,2,2}      280: {1,1,1,3,4}
   54: {1,2,2,2}      168: {1,1,1,2,4}      294: {1,2,4,4}
   60: {1,1,2,3}      198: {1,2,2,5}        300: {1,1,2,3,3}
   75: {2,3,3}        204: {1,1,2,7}        306: {1,2,2,7}
   84: {1,1,2,4}      220: {1,1,3,5}        308: {1,1,4,5}
   90: {1,2,2,3}      228: {1,1,2,8}        312: {1,1,1,2,6}
   98: {1,4,4}        234: {1,2,2,6}        315: {2,2,3,4}
  108: {1,1,2,2,2}    240: {1,1,1,1,2,3}    324: {1,1,2,2,2,2}
  120: {1,1,1,2,3}    242: {1,5,5}          336: {1,1,1,1,2,4}
  126: {1,2,2,4}      245: {3,4,4}          338: {1,6,6}
  132: {1,1,2,5}      250: {1,3,3,3}        340: {1,1,3,7}
  140: {1,1,3,4}      260: {1,1,3,6}        342: {1,2,2,8}
  147: {2,4,4}        264: {1,1,1,2,5}      348: {1,1,2,10}
  150: {1,2,3,3}      270: {1,2,2,2,3}      350: {1,3,3,4}
For example, 60 is the Heinz number of (3,2,1,1), which has run-lengths: (1,1,2) -> (2,1) -> (1,1) -> (2) -> (1). Since (2,1) is not weakly increasing, 60 is in the sequence.
		

Crossrefs

Partitions with weakly increasing run-lengths are counted by A100883.
Totally strong partitions are counted by A316496.
Heinz numbers of totally strong partitions are A316529.
The version for reversed partitions is A316597.
The strong version is (also) A316597.
The alternating version is A317258.
Totally co-strong partitions are counted by A332275.
The complement is A335376.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    totcostrQ[q_]:=Or[Length[q]<=1,And[OrderedQ[Length/@Split[q]],totcostrQ[Length/@Split[q]]]];
    Select[Range[100],!totcostrQ[Reverse[primeMS[#]]]&]
Showing 1-4 of 4 results.