A316624 Number of balanced p-trees with n leaves.
1, 1, 1, 2, 2, 4, 4, 8, 9, 16, 20, 40, 47, 83, 111, 201, 259, 454, 603, 1049, 1432, 2407, 3390, 6006, 8222, 13904, 20304, 34828, 50291, 85817, 126013, 217653, 317894, 535103, 798184, 1367585, 2008125, 3360067, 5048274, 8499942, 12623978, 21023718, 31552560, 52575257
Offset: 1
Keywords
Examples
The a(1) = 1 through a(7) = 4 balanced p-trees: o (oo) (ooo) (oooo) (ooooo) (oooooo) (ooooooo) ((oo)(oo)) ((ooo)(oo)) ((ooo)(ooo)) ((oooo)(ooo)) ((oooo)(oo)) ((ooooo)(oo)) ((oo)(oo)(oo)) ((ooo)(oo)(oo))
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..500
Crossrefs
Programs
-
Mathematica
ptrs[n_]:=If[n==1,{"o"},Join@@Table[Tuples[ptrs/@p],{p,Rest[IntegerPartitions[n]]}]]; Table[Length[ptrs[n]],{n,12}] Table[Length[Select[ptrs[n],SameQ@@Length/@Position[#,"o"]&]],{n,12}]
-
PARI
seq(n)={my(p=x + O(x*x^n), q=0); while(p, q+=p; p = 1/prod(k=1, n, 1 - polcoef(p,k)*x^k + O(x*x^n)) - 1 - p); Vec(q)} \\ Andrew Howroyd, Oct 26 2018
Extensions
Terms a(17) and beyond from Andrew Howroyd, Oct 26 2018
Comments