A316653 Number of series-reduced rooted identity trees with n leaves spanning an initial interval of positive integers.
1, 1, 6, 58, 774, 13171, 272700, 6655962, 187172762, 5959665653, 211947272186, 8327259067439, 358211528524432, 16744766791743136, 845195057333580332, 45814333121920927067, 2654330505021077873594, 163687811930206581162063, 10705203621191765328300832
Offset: 1
Keywords
Examples
The a(3) = 6 trees are (1(12)), (2(12)), (1(23)), (2(13)), (3(12)), (123).
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; gro[m_]:=If[Length[m]==1,m,Select[Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m],Length[#]>1&])],UnsameQ@@#&]]; allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]; Table[Sum[Length[gro[m]],{m,allnorm[n]}],{n,5}]
-
PARI
\\ here R(n,2) is A031148. WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)} R(n,k)={my(v=[k]); for(n=2, n, v=concat(v, WeighT(concat(v,[0]))[n])); v} seq(n)={sum(k=1, n, R(n,k)*sum(r=k, n, binomial(r,k)*(-1)^(r-k)) )} \\ Andrew Howroyd, Sep 14 2018
Extensions
Terms a(9) and beyond from Andrew Howroyd, Sep 14 2018
Comments