cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316673 Number of paths from (0,0,0) to (n,n,n) that always move closer to (n,n,n).

Original entry on oeis.org

1, 13, 818, 64324, 5592968, 515092048, 49239783968, 4831678931008, 483371425775744, 49083260519243008, 5043379069021557248, 523221884090930480128, 54715789513061864081408, 5760456190025868833542144, 609948004367577499751948288, 64905519628343663567453569024
Offset: 0

Views

Author

Alois P. Heinz, Jul 10 2018

Keywords

Crossrefs

Column k=3 of A316674.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, [1, 13, 818, 64324][n+1],
         (2*(3*n-2)*(57*n^2-95*n+25)*a(n-1)-4*(9*n^3-30*n^2+29*n-6)*
          a(n-2)+8*(3*n-1)*(n-2)^2*a(n-3))/(n^2*(3*n-4)))
        end:
    seq(a(n), n=0..20);
  • Mathematica
    a[n_] := a[n] = If[n < 4, {1, 13, 818, 64324}[[n+1]], (2(3n-2)(57n^2- 95n+25) a[n-1] - 4(9n^3-30n^2+29n-6) a[n-2] + 8(3n-1)(n-2)^2 a[n-3]) / (n^2 (3n-4))];
    a /@ Range[0, 20] (* Jean-François Alcover, May 14 2020, after Maple *)

Formula

Recurrence: see Maple program.
a(n) = A126086(n) * ceiling(2^(n-1)) = A126086(n) * A011782(n).
a(n) ~ sqrt((6 + 5*2^(1/3) + 4*2^(2/3))/6) * (24*2^(2/3) + 30*2^(1/3) + 38)^n / (4*Pi*n). - Vaclav Kotesovec, May 14 2020
G.f.: (1+hypergeom([1/3, 2/3],[1],108*x/(1-2*x)^3)/(1-2*x))/2. - Mark van Hoeij, Nov 28 2024