A316673 Number of paths from (0,0,0) to (n,n,n) that always move closer to (n,n,n).
1, 13, 818, 64324, 5592968, 515092048, 49239783968, 4831678931008, 483371425775744, 49083260519243008, 5043379069021557248, 523221884090930480128, 54715789513061864081408, 5760456190025868833542144, 609948004367577499751948288, 64905519628343663567453569024
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..487
Programs
-
Maple
a:= proc(n) option remember; `if`(n<4, [1, 13, 818, 64324][n+1], (2*(3*n-2)*(57*n^2-95*n+25)*a(n-1)-4*(9*n^3-30*n^2+29*n-6)* a(n-2)+8*(3*n-1)*(n-2)^2*a(n-3))/(n^2*(3*n-4))) end: seq(a(n), n=0..20);
-
Mathematica
a[n_] := a[n] = If[n < 4, {1, 13, 818, 64324}[[n+1]], (2(3n-2)(57n^2- 95n+25) a[n-1] - 4(9n^3-30n^2+29n-6) a[n-2] + 8(3n-1)(n-2)^2 a[n-3]) / (n^2 (3n-4))]; a /@ Range[0, 20] (* Jean-François Alcover, May 14 2020, after Maple *)
Formula
Recurrence: see Maple program.
a(n) ~ sqrt((6 + 5*2^(1/3) + 4*2^(2/3))/6) * (24*2^(2/3) + 30*2^(1/3) + 38)^n / (4*Pi*n). - Vaclav Kotesovec, May 14 2020
G.f.: (1+hypergeom([1/3, 2/3],[1],108*x/(1-2*x)^3)/(1-2*x))/2. - Mark van Hoeij, Nov 28 2024