A316675 Triangle read by rows: T(n,k) gives the number of ways to stack n triangles in a valley so that the right wall has k triangles for n >= 0 and 0 <= k <= n.
1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 2, 1, 1, 1, 0, 0, 1, 1, 3, 2, 1, 1, 1, 0, 0, 1, 1, 3, 3, 2, 1, 1, 1, 0, 0, 1, 1, 3, 3, 3, 2, 1, 1, 1, 0, 0, 1, 1, 4, 3, 4, 3, 2, 1, 1, 1, 0, 0, 1, 1, 5, 4, 5, 4, 3, 2, 1, 1, 1
Offset: 0
Examples
T(8,4) = 3. * * / \ / \ *---* * *---*---* *---* \ / \ / \ \ / \ / \ / \ / \ *---*---* *---*---* *---*---* \ / \ / \ / \ / \ / \ / *---* *---* *---* \ / \ / \ / * * * Triangle begins: 1; 0, 1; 0, 0, 1; 0, 0, 1, 1; 0, 0, 1, 1, 1; 0, 0, 1, 1, 1, 1; 0, 0, 1, 1, 1, 1, 1; 0, 0, 1, 1, 2, 1, 1, 1; 0, 0, 1, 1, 3, 2, 1, 1, 1; 0, 0, 1, 1, 3, 3, 2, 1, 1, 1; 0, 0, 1, 1, 3, 3, 3, 2, 1, 1, 1; 0, 0, 1, 1, 4, 3, 4, 3, 2, 1, 1, 1; 0, 0, 1, 1, 5, 4, 5, 4, 3, 2, 1, 1, 1; 0, 0, 1, 1, 5, 5, 6, 5, 4, 3, 2, 1, 1, 1; 0, 0, 1, 1, 5, 5, 8, 6, 5, 4, 3, 2, 1, 1, 1; 0, 0, 1, 1, 6, 5, 10, 8, 7, 5, 4, 3, 2, 1, 1, 1; 0, 0, 1, 1, 7, 6, 11, 10, 10, 7, 5, 4, 3, 2, 1, 1, 1; 0, 0, 1, 1, 7, 7, 13, 11, 12, 10, 7, 5, 4, 3, 2, 1, 1, 1; 0, 0, 1, 1, 7, 7, 16, 13, 14, 12, 10, 7, 5, 4, 3, 2, 1, 1, 1; ...
Links
- Seiichi Manyama, Rows n = 0..100, flattened
Crossrefs
Formula
For m >= 0,
Sum_{n>=2m} T(n,2m) *x^n = x^(2m) * Product_{j=1..m} (1+x^(2j-1))/(1-x^(2j)).
Sum_{n>=2m+1} T(n,2m+1)*x^n = x^(2m+1) * Product_{j=1..m} (1+x^(2j-1))/(1-x^(2j)).