A316680 The integer 1358 and its infinite continuation (when iterating the rule explained in A316650 and in the Comment section here).
1358, 7915, 35917, 143617, 65281, 29677, 95710, 435010, 334624, 152104, 117004, 90004, 69235, 276910, 1107610, 6922510, 27690010, 110760010, 692250010, 2769000010, 11076000010, 69225000010, 276900000010, 1107600000010, 6922500000010, 27690000000010, 110760000000010, 692250000000010, 2769000000000010
Offset: 1
Examples
1358/17 gives 79 with remainder 15; 7915/22 gives 359 with remainder 17; 35917/25 gives 1436 with remainder 17; 143617/22 gives 6528 remainder 1; ... After 6922510 starts a devilish inflation "from the middle", in a ternary cycle: 6922510 27690010 110760010 692250010 2769000010 11076000010 69225000010 276900000010 1107600000010 6922500000010 27690000000010 110760000000010 692250000000010 2769000000000010 11076000000000010 69225000000000010 276900000000000010 1107600000000000010 6922500000000000010 ... We have: 2769(k zeros)10 11076(k zeros)10 69225(k zeros)10 then: 2769(k+2 zeros)10 11076(k+2 zeros)10 69225(k+2 zeros)10 then: 2769(k+4 zeros)10 11076(k+4 zeros)10 69225(k+4 zeros)10 Etc.
Crossrefs
Programs
-
Mathematica
NestList[FromDigits@ Flatten[IntegerDigits@ # & /@ QuotientRemainder[#, Total[IntegerDigits@ #]]] &, 1358, 28] (* Michael De Vlieger, Jul 10 2018 *)
Comments