cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316706 Number of solutions to k_1 + 2*k_2 + ... + n*k_n = n, where k_i are from {-1,0,1}, i=1..n.

Original entry on oeis.org

1, 1, 1, 2, 5, 12, 27, 69, 178, 457, 1194, 3178, 8538, 23062, 62726, 171804, 473069, 1308397, 3634075, 10133154, 28352421, 79575702, 223981549, 632101856, 1788172541, 5069879063, 14403962756, 41001479103, 116921037003, 333971884899, 955443681814, 2737387314548, 7853533625522, 22560919253095, 64890249175438, 186854616134794
Offset: 0

Views

Author

Paul D. Hanna, Jul 10 2018

Keywords

Comments

a(n) is the coefficient of both x^n and 1/x^n in Product_{k=1..n} (1/x^k + 1 + x^k), while A007576 gives the constant term in the symmetric product.

Crossrefs

Programs

  • Mathematica
    nmax = 40; p = 1; Flatten[{1, Table[Coefficient[p = Expand[p*(1/x^n + 1 + x^n)], x^n], {n, 1, nmax}]}] (* Vaclav Kotesovec, Jul 11 2018 *)
  • PARI
    {a(n) = polcoeff( prod(k=1,n, 1/x^k + 1 + x^k) + x*O(x^n),n)}
    for(n=0,40, print1(a(n),", "))
    
  • Python
    from collections import Counter
    def A316706(n):
        c = {0:1}
        for k in range(1,n+1):
            b = Counter(c)
            for j in c:
                a = c[j]
                b[j+k] += a
                b[j-k] += a
            c = b
        return c[n] # Chai Wah Wu, Feb 05 2024

Formula

a(n) = [x^n] Product_{k=1..n} (1/x^k + 1 + x^k).
a(n) = [x^(n*(n-1)/2)] Product_{k=1..n} (1 + x^k + x^(2*k)).
a(n) = [x^(n*(n+3)/2)] Product_{k=1..n} (1 + x^k + x^(2*k)).
a(n) ~ 3^(n + 1) / (2 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jul 11 2018