cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316713 Unique representation of nonnegative numbers by iterated tribonacci A, B and C sequences.

Original entry on oeis.org

1, 21, 121, 31, 1121, 221, 131, 11121, 2121, 1221, 321, 1131, 231, 111121, 21121, 12121, 3121, 11221, 2221, 1321, 11131, 2131, 1231, 331, 1111121, 211121, 121121, 31121, 112121, 22121, 13121, 111221, 21221, 12221, 3221, 11321, 2321, 111131, 21131, 12131, 3131, 11231, 2231, 1331, 11111121, 2111121, 1211121, 311121, 1121121, 221121, 131121, 1112121, 212121, 122121, 32121, 113121, 23121, 1111221, 211221, 121221, 31221, 112221, 22221, 13221, 111321, 21321, 12321
Offset: 0

Views

Author

Wolfdieter Lang, Sep 11 2018

Keywords

Comments

This representation is the tribonacci A000073 analog of the Wythoff representation of numbers (A189921 or A317208) for the Fibonacci case.
The complementary and disjoint sets A, B and C are given by the sequences A278040, A278039, and A278041, respectively.
The present representation uses 1 for B, 2 for A and 3 for C numbers. The brackets for sequence iteration and the final argument 0 have to be added. E.g.: a(0) = 1 for B(1), a(1) = 21 for A(B(0)), a(2) = 121 for B(A(B(0))), a(3) = 31 for C(B(0)), ...
An equivalent such representation is given by A317206 using different complementary sequences A, B and C, related to our B = A278039, A = A278040, and C = A278041: A(n) = A003144(n) = A278039(n-1) + 1, B(n) = A003145(n) = A278040(n-1) + 1, C(n) = A003146(n) = A278041(n-1) + 1 with n >= 1.
The length of the string a(n) is A316714(n). The number of B, A and C sequences used for the ABC-representation of n (that is the number of 1s, 2s and 3s of a(n)) is A316715, A316716 and A316717, respectively.

Examples

			The complementary and disjoint sequences A, B, C begin, for n >= 0:
n: 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15  16  17  18  19  20  21  22 ...
A: 1  5  8 12 14 18 21 25 29 32 36 38 42 45 49 52  56  58  62  65  69  73  76 ...
B: 0  2  4  6  7  9 11 13 15 17 19 20 22 24 26 28  30  31  33  35  37  39  41 ...
C: 3 10 16 23 27 34 40 47 54 60 67 71 78 84 91 97 104 108 115 121 128 135 141 ...
---------------------------------------------------------------------------------
The ABC representations begin:
                                              #(1)   #(2)    #(3)   L(a(n))
           a(n)                             A316715 A316716 A316717 A316714
n = 0:       1                  B(0) =  0      1      0       0       1
n = 1:      21               A(B(0)) =  1      1      1       0       2
n = 2:     121            B(A(B(0))) =  2      2      1       0       3
n = 3:      31               C(B(0)) =  3      1      0       1       2
n = 4:    1121         B(B(A(B(0)))) =  4      3      1       0       4
n = 5:     221            A(A(B(0))) =  5      1      2       0       3
n = 6:     131            B(C(B(0))) =  6      2      0       1       3
n = 7:   11121      B(B(B(A(B(0))))) =  7      4      1       0       5
n = 8:    2121         A(B(A(B(0)))) =  8      2      2       0       4
n = 9:    1221         B(A(A(B(0)))) =  9      2      2       0       4
n = 10:    321            C(A(B(0))) = 10      1      1       1       3
n = 11:   1131         B(B(C(B(0)))) = 11      3      0       1       4
n = 12:    231            A(C(B(0))) = 12      1      1       1       3
n = 13: 111121   B(B(B(B(A(B(0)))))) = 13      5      1       0       6
n = 14:  21121      A(B(B(A(B(0))))) = 14      3      2       0       5
n = 15:  12121      B(A(B(A(B(0))))) = 15      3      2       0       5
n = 16:   3121         C(B(A(B(0)))) = 16      2      1       1       4
n = 17:  11221      B(B(A(A(B(0))))) = 17      3      2       0       5
n = 18:   2221         A(A(A(B(0)))) = 18      1      3       0       4
n = 19:   1321         B(C(A(B(0)))) = 19      2      1       1       4
n = 20:  11131      B(B(B(C(B(0))))) = 20      4      0       1       5
...
----------------------------------------------------------------------------
		

Crossrefs