A316713 Unique representation of nonnegative numbers by iterated tribonacci A, B and C sequences.
1, 21, 121, 31, 1121, 221, 131, 11121, 2121, 1221, 321, 1131, 231, 111121, 21121, 12121, 3121, 11221, 2221, 1321, 11131, 2131, 1231, 331, 1111121, 211121, 121121, 31121, 112121, 22121, 13121, 111221, 21221, 12221, 3221, 11321, 2321, 111131, 21131, 12131, 3131, 11231, 2231, 1331, 11111121, 2111121, 1211121, 311121, 1121121, 221121, 131121, 1112121, 212121, 122121, 32121, 113121, 23121, 1111221, 211221, 121221, 31221, 112221, 22221, 13221, 111321, 21321, 12321
Offset: 0
Examples
The complementary and disjoint sequences A, B, C begin, for n >= 0: n: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 ... A: 1 5 8 12 14 18 21 25 29 32 36 38 42 45 49 52 56 58 62 65 69 73 76 ... B: 0 2 4 6 7 9 11 13 15 17 19 20 22 24 26 28 30 31 33 35 37 39 41 ... C: 3 10 16 23 27 34 40 47 54 60 67 71 78 84 91 97 104 108 115 121 128 135 141 ... --------------------------------------------------------------------------------- The ABC representations begin: #(1) #(2) #(3) L(a(n)) a(n) A316715 A316716 A316717 A316714 n = 0: 1 B(0) = 0 1 0 0 1 n = 1: 21 A(B(0)) = 1 1 1 0 2 n = 2: 121 B(A(B(0))) = 2 2 1 0 3 n = 3: 31 C(B(0)) = 3 1 0 1 2 n = 4: 1121 B(B(A(B(0)))) = 4 3 1 0 4 n = 5: 221 A(A(B(0))) = 5 1 2 0 3 n = 6: 131 B(C(B(0))) = 6 2 0 1 3 n = 7: 11121 B(B(B(A(B(0))))) = 7 4 1 0 5 n = 8: 2121 A(B(A(B(0)))) = 8 2 2 0 4 n = 9: 1221 B(A(A(B(0)))) = 9 2 2 0 4 n = 10: 321 C(A(B(0))) = 10 1 1 1 3 n = 11: 1131 B(B(C(B(0)))) = 11 3 0 1 4 n = 12: 231 A(C(B(0))) = 12 1 1 1 3 n = 13: 111121 B(B(B(B(A(B(0)))))) = 13 5 1 0 6 n = 14: 21121 A(B(B(A(B(0))))) = 14 3 2 0 5 n = 15: 12121 B(A(B(A(B(0))))) = 15 3 2 0 5 n = 16: 3121 C(B(A(B(0)))) = 16 2 1 1 4 n = 17: 11221 B(B(A(A(B(0))))) = 17 3 2 0 5 n = 18: 2221 A(A(A(B(0)))) = 18 1 3 0 4 n = 19: 1321 B(C(A(B(0)))) = 19 2 1 1 4 n = 20: 11131 B(B(B(C(B(0))))) = 20 4 0 1 5 ... ----------------------------------------------------------------------------
Links
- Wolfdieter Lang, The Tribonacci and ABC Representations of Numbers are Equivalent, arXiv preprint arXiv:1810.09787 [math.NT], 2018.
Comments