cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316726 The number of ways to tile (with squares and rectangles) a 2 X (n+2) strip with the upper left and upper right squares removed.

Original entry on oeis.org

2, 4, 15, 46, 150, 480, 1545, 4964, 15958, 51292, 164871, 529946, 1703418, 5475328, 17599457, 56570280, 181834970, 584475732, 1878691887, 6038716422, 19410365422, 62391120800, 200545011401, 644615789580, 2072001259342, 6660074556204, 21407609138375
Offset: 0

Views

Author

Zijing Wu, Jul 11 2018

Keywords

Comments

Each number in the sequence is the partial sum of A033505 (n starts at 0, each number add one if n is even). We can also find the recursion relation a(n) = 2*a(n-1) + 4*a(n-2) - a(n-4) for the sequence, which can be proved by induction.

Examples

			For n=4, a(4) = 150 = 2*a(3) + 4*a(2) - a(0).
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[ Series[(-x^2 + 1)/(x^4 - 4x^2 - 2x + 1), {x, 0, 27}], x] (* or *) LinearRecurrence[{2, 4, 0, -1}, {2, 4, 15, 46}, 27] (* Robert G. Wilson v, Jul 15 2018 *)
  • PARI
    Vec((2 - x^2) / ((1 + x)*(1 - 3*x - x^2 + x^3)) + O(x^30)) \\ Colin Barker, Jul 12 2018

Formula

a(n) = 2*a(n-1) + 4*a(n-2) - a(n-4) for n>=4.
G.f.: (2 - x^2) / ((1 + x)*(1 - 3*x - x^2 + x^3)). - Colin Barker, Jul 12 2018
a(n) = A030186(n) + 2*A033505(n-1) + a(n-2). - Greg Dresden and Ge Ma, Jul 12 2025

Extensions

More terms from Colin Barker, Jul 12 2018