cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316782 Number of achiral tree-factorizations of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 13 2018

Keywords

Comments

A factorization of n is a finite nonempty multiset of positive integers greater than 1 with product n. An achiral tree-factorization of n is either (case 1) the number n itself or (case 2) a finite constant multiset of two or more achiral tree-factorizations, one of each factor in a factorization of n.
a(n) is also the number of ways to write n as a left-nested power-tower ((a^b)^c)^... of positive integers greater than one. For example, the a(64) = 6 ways are 64, 8^2, 4^3, 2^6, (2^3)^2, (2^2)^3.
a(n) depends only on the prime signature of n. - Andrew Howroyd, Nov 18 2018

Examples

			The a(1296) = 4 achiral tree-factorizations are 1296, (36*36), (6*6*6*6), ((6*6)*(6*6)).
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=1+Sum[a[d],{d,n^(1/Rest[Divisors[GCD@@FactorInteger[n][[All,2]]]])}];
    Array[a,100]
  • PARI
    a(n)={my(z, e=ispower(n,,&z)); 1 + if(e, sumdiv(e, d, if(dAndrew Howroyd, Nov 18 2018

Formula

a(n) = 1 + Sum_{n = d^k, k>1} a(d).
a(p^n) = A067824(n) for prime p. - Andrew Howroyd, Nov 18 2018