cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316785 Numerator of an upper bound for the maximal element in phi^(-1)(n).

Original entry on oeis.org

2, 6, 6, 15, 10, 21, 14, 30, 18, 33, 22, 455, 26, 42, 30, 255, 34, 133, 38, 165, 42, 69, 46, 455, 50, 78, 54, 435, 58, 2387, 62, 255, 66, 102, 70, 319865, 74, 114, 78, 1353, 82, 301, 86, 345, 90, 141, 94, 7735, 98, 165, 102, 795, 106, 399, 110, 435, 114, 177, 118, 1892891
Offset: 1

Views

Author

Franz Vrabec, Jul 13 2018

Keywords

Comments

A057635(n) <= a(n)/A316786(n).

Examples

			For n = 12, there are 5 primes p with (p-1)|12: p1 = 2, p2 = 3, p3 = 5, p4 = 7, and p5 = 13. The numerator of 12*(2/1)*(3/2)*(5/4)*(7/6)*(13/12) = 455/8 is a(12) = 455.
		

Crossrefs

Cf. A057635, A316786 (denominators).

Programs

  • Maple
    with(numtheory): A316785 := proc(n) local d,N; N:=n; for d in divisors(n) do if is prime(d+1) then N := (N*(d+1))/(d) end if; end do; numer(N); end proc;
  • Mathematica
    a[n_] := Block[{p = Select[Prime@ Range@ PrimePi[n + 1], Mod[n, # - 1] == 0 &]}, Numerator[n*Times @@ (p/(p - 1))]]; Array[a, 60] (* Robert G. Wilson v, Aug 01 2018 *)
  • PARI
    a(n) = my(p=n); fordiv(n, d, if (isprime(d+1), p *= (d+1)/d)); numerator(p); \\ Michel Marcus, Jul 29 2018

Formula

Numerator of n*Product_{p prime, (p-1)|n} p/(p-1).