cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316789 Number of same-tree-factorizations of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 14, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 14 2018

Keywords

Comments

A constant factorization of n is a finite nonempty constant multiset of positive integers greater than 1 with product n. Constant factorizations correspond to perfect divisors (A089723). A same-tree-factorization of n is either (case 1) the number n itself or (case 2) a finite sequence of two or more same-tree-factorizations, one of each factor in a constant factorization of n.
a(n) depends only on the prime signature of n. - Andrew Howroyd, Nov 18 2018

Examples

			The a(64) = 14 same-tree-factorizations:
  64
  (8*8)
  (4*4*4)
  (8*(2*2*2))
  ((2*2*2)*8)
  (4*4*(2*2))
  (4*(2*2)*4)
  ((2*2)*4*4)
  (2*2*2*2*2*2)
  (4*(2*2)*(2*2))
  ((2*2)*4*(2*2))
  ((2*2)*(2*2)*4)
  ((2*2*2)*(2*2*2))
  ((2*2)*(2*2)*(2*2))
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=1+Sum[a[n^(1/d)]^d,{d,Rest[Divisors[GCD@@FactorInteger[n][[All,2]]]]}]
    Array[a,100]
  • PARI
    a(n)={my(z, e=ispower(n,,&z)); 1 + if(e, sumdiv(e, d, if(d>1, a(z^(e/d))^d)))} \\ Andrew Howroyd, Nov 18 2018

Formula

a(n) = 1 + Sum_{n = x^y, y > 1} a(x)^y.
a(2^n) = A281145(n).