A316789 Number of same-tree-factorizations of n.
1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 14, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1
Offset: 1
Keywords
Examples
The a(64) = 14 same-tree-factorizations: 64 (8*8) (4*4*4) (8*(2*2*2)) ((2*2*2)*8) (4*4*(2*2)) (4*(2*2)*4) ((2*2)*4*4) (2*2*2*2*2*2) (4*(2*2)*(2*2)) ((2*2)*4*(2*2)) ((2*2)*(2*2)*4) ((2*2*2)*(2*2*2)) ((2*2)*(2*2)*(2*2))
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
a[n_]:=1+Sum[a[n^(1/d)]^d,{d,Rest[Divisors[GCD@@FactorInteger[n][[All,2]]]]}] Array[a,100]
-
PARI
a(n)={my(z, e=ispower(n,,&z)); 1 + if(e, sumdiv(e, d, if(d>1, a(z^(e/d))^d)))} \\ Andrew Howroyd, Nov 18 2018
Formula
a(n) = 1 + Sum_{n = x^y, y > 1} a(x)^y.
a(2^n) = A281145(n).
Comments