A316854 Number of integer partitions of n whose reciprocal sum is the reciprocal of an integer.
1, 1, 1, 2, 1, 1, 1, 2, 3, 2, 2, 2, 1, 1, 1, 4, 2, 4, 1, 5, 1, 5, 1, 3, 4, 2, 5, 6, 5, 5, 4, 5, 5, 4, 8, 10, 9, 7, 5, 9, 10, 6, 12, 10, 8, 7, 6, 9, 13, 15, 8, 19, 13, 19, 19, 19, 18, 22, 26, 28, 28, 29, 22, 33, 29, 28, 38, 34, 26, 40, 32, 43, 39, 51, 38, 62, 46
Offset: 1
Keywords
Examples
The a(36) = 10 partitions: (36), (30,6), (24,12), (18,18), (12,12,12), (12,12,6,6), (15,10,4,4,3), (12,12,6,3,3), (12,8,8,6,2), (6,6,6,6,6,6).
Links
- Giovanni Resta, Table of n, a(n) for n = 1..200 (first 100 terms from Robert G. Wilson v)
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],IntegerQ[1/Sum[1/m,{m,#}]]&]],{n,30}] ric[n_, p_, s_] := If[n == 0, If[IntegerQ[1/s], c++], Do[If[s + 1/i <= 1, ric[n - i, Append[p, i], s + 1/i]], {i, Min[p[[-1]], n], 1, -1}]]; a[n_] := (c = 0; Do[ric[n - j, {j}, 1/j], {j, n}]; c); Array[a, 80] (* after Giovanni Resta in A316898, Robert G. Wilson v, Jul 23 2018 *)
-
PARI
a(n)={my(s=0); forpart(p=n, if(frac(1/sum(i=1, #p, 1/p[i]))==0, s++)); s} \\ Andrew Howroyd, Jul 15 2018
Extensions
a(51)-a(77) from Giovanni Resta, Jul 15 2018
Comments