A316864 Number of times 3 appears in decimal expansion of n.
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0
Offset: 0
Examples
a(0) = 0 since the decimal representation of 0 does not contain the digit 3. a(3) = 1 since 3 appears once in the decimal expansion of 3.
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Maple
f:= proc(n) option remember; procname(floor(n/10)) + `if`(n mod 10 = 3, 1, 0) end proc: for i from 0 to 9 do f(i):= `if`(i=3,1,0) od: map(f, [$0..100]); # Robert Israel, Dec 10 2019
-
Mathematica
Array[ DigitCount[#, 10, 3] &, 105, 0]
-
PARI
a(n) = #select(x->x==3, digits(n)); \\ Michel Marcus, Jul 20 2018
Formula
From Robert Israel, Dec 10 2019: (Start)
a(10*n+3) = a(n)+1, a(10*n+i)=a(i) for i = 0,1,2,4..9.
G.f. g(z) satisfies g(z) = z^3/(1-z^10) + ((1-z^10)/(1-z))*g(z^10). (End)