A316911 Define K(n) = Integral_{t=0..1} (-1/2)^n/(1+t)*((1-t)^2*t^2/(1+t))^n*dt and write K(n) = d(n)*log(2) - a(n)/c(n) where a(n), d(n), c(n) are positive integers; sequence gives a(n).
0, 25, 1719, 143731, 64456699, 1846991851, 781688106621, 445837607665267, 611642484654021, 674842075634295726569, 9142845536119405749427, 38984536004906714808649, 80321414381403813427242343, 342487507476162248453574514441, 562411667990487545372378396727201
Offset: 0
Examples
{a(10),c(10),d(10)}={9142845536119405749427,307660953600,42872967012}. r(10)=a(10)/c(10)/d(10)=9142845536119405749427/13190337914573262643200. r(10)=0.693147180559945309417232121402... log(2)=0.693147180559945309417232121458... M(10)=-log(|r(10)-log(2)|)/log(13190337914573262643200)=1.27...
Links
- F. Beukers, A rational approach to Pi, Nieuw archief voor wiskunde 5/1 No. 4, December 2000, p. 378.
- Bradley Klee, Quality Histogram.
Crossrefs
Programs
-
Mathematica
FracData[n0_]:=RecurrenceTable[{2*(n-1)*(2*n-3)*(2*n-1)*(33*n-8)*a[n-2]+ 9*(2*n-1)*(693*n^3-1554*n^2+989*n-160)*a[n-1] -3*n*(3*n-2)*(3*n-1)*(33*n-41)*a[n] == 0, a[0]==0, a[1]==25/6}, a, {n, 0, n0}] Numerator[FracData[5000]]
Comments