cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A190726 Central coefficients of Riordan matrix A118384.

Original entry on oeis.org

1, 6, 62, 720, 8806, 110916, 1423796, 18520788, 243289670, 3220011684, 42872967012, 573608356272, 7705343534716, 103857425975400, 1403902871946000, 19024773303675420, 258372666772083270, 3515644245559211172, 47918193512409831380
Offset: 0

Views

Author

Emanuele Munarini, May 17 2011

Keywords

Comments

This sequence gives the integer part of an integral approximation to log(2), thus bears strong similarity to A123178. Quality of rational approximants appears entirely sufficient to prove irrationality. - Bradley Klee, Jun 29 2018

Examples

			From _Bradley Klee_, Jul 16 2018: (Start)
I_2 = Integral_{t=0..1} ((1-t)^4*t^4)/(4*(1+t)^3)*dt = 62*log(2) - 1719/40 < 10^(-3).
I_3 = Integral_{t=0..1} - ((1-t)^6*t^6)/(8*(1+t)^4)*dt = 720*log(2) - 143731/288 < 10^(-5). (End)
		

Crossrefs

Log(2) approximation rationals: A316911, A316912.
Cf. A123178.

Programs

  • Mathematica
    Table[Sum[Binomial[2n,k]Binomial[2n,n-k]2^k,{k,0,n}],{n,0,100}]
    RecurrenceTable[{2*(n-1)*(2*n-3)*(2*n-1)*(33*n-8)*a[n-2]+ 9*(2*n-1)*(693*n^3-1554*n^2+989*n-160)*a[n-1] -3*n*(3*n-2)*(3*n-1)*(33*n-41)*a[n]==0, a[0]==1,a[1]==6},a,{n,0,10}] (* Bradley Klee, Jun 29 2018 *)
  • Maxima
    makelist(sum(binomial(2*n,k)*binomial(2*n,n-k)*2^k,k,0,n),n,0,12);
    
  • PARI
    a(n)=sum(k=0,n,binomial(2*n,k)*binomial(2*n,n-k)<Charles R Greathouse IV, Jun 29 2011

Formula

a(n) = T(2*n,n), where T(n,k) = A118384(n,k).
a(n) = Sum_{k=0..n} binomial(2*n, k)*binomial(2*n, n-k)*2^k.
a(n) = Sum_{k=0..n} binomial(2*n, k)*binomial(k, n-k)*2^(n-k)*3^(2*k-n).
From Bradley Klee, Jun 29 2018: (Start)
a(n)*log(2) - A316911(n)/A316912(n) = I_n = Integral_{t=0..1}(-1/2)^n/(1+t)*((1-t)^2*t^2/(1+t))^n*dt.
Lim_{n->oo} I_n = 0, therefore:
Lim_{n->oo} A316911(n)/A316912(n)/a(n) = log(2).
G.f. G(x) and derivatives G^(n)(x) = d^n/dx^n G(x) satisfy a Picard-Fuchs type differential equation, 0 = Sum_{m=0..5,n=0..3} M_{m,n} x^m G^(n)(x), with integer matrix: M = {{324,-54,0,0}, {-36,10842,-486,0}, {84,8352,14931,-243}, {0,756,19026,3024}, {0,0,672,5364}, {0,0,0,112}}.
2*(n-1)*(2*n-3)*(2*n-1)*(33*n-8)*a(n-2)+ 9*(2*n-1)*(693*n^3-1554*n^2+989*n-160)*a(n-1) -3*n*(3*n-2)*(3*n-1)*(33*n-41)*a(n)=0.
(End)

A316912 Define K(n) = Integral_{t=0..1} (-1/2)^n/(1+t)*((1-t)^2*t^2/(1+t))^n*dt and write K(n) = d(n)*log(2) - b(n)/a(n) where a(n), d(n), b(n) are positive integers; sequence gives a(n).

Original entry on oeis.org

1, 6, 40, 288, 10560, 24024, 792064, 34728960, 3627008, 302356454400, 307660953600, 98050867200, 15038824120320, 4757532010463232, 577952036826644480, 26189033224273920, 358597702262241361920, 244498433360619110400, 143982410756809031680
Offset: 0

Views

Author

Bradley Klee, Jul 16 2018

Keywords

Crossrefs

Integer Part: A190726. Numerators: A316911. Similar Pi Approximation: A123178, A305997, A305998.

Programs

  • Mathematica
    FracData[n0_]:=RecurrenceTable[{2*(n-1)*(2*n-3)*(2*n-1)*(33*n-8)*a[n-2]+ 9*(2*n-1)*(693*n^3-1554*n^2+989*n-160)*a[n-1] -3*n*(3*n-2)*(3*n-1)*(33*n-41)*a[n] == 0, a[0]==0, a[1]==25/6}, a, {n, 0, n0}]
    Denominator[FracData[5000]]
Showing 1-2 of 2 results.