A200536
Triangle, read by rows of 2*n+1 terms, where row n lists the coefficients in (1+3*x+2*x^2)^n.
Original entry on oeis.org
1, 1, 3, 2, 1, 6, 13, 12, 4, 1, 9, 33, 63, 66, 36, 8, 1, 12, 62, 180, 321, 360, 248, 96, 16, 1, 15, 100, 390, 985, 1683, 1970, 1560, 800, 240, 32, 1, 18, 147, 720, 2355, 5418, 8989, 10836, 9420, 5760, 2352, 576, 64, 1, 21, 203, 1197, 4809, 13923, 29953, 48639, 59906, 55692, 38472, 19152, 6496, 1344, 128
Offset: 0
The triangle begins:
1;
1, 3, 2;
1, 6, 13, 12, 4;
1, 9, 33, 63, 66, 36, 8;
1, 12, 62, 180, 321, 360, 248, 96, 16;
1, 15, 100, 390, 985, 1683, 1970, 1560, 800, 240, 32;
1, 18, 147, 720, 2355, 5418, 8989, 10836, 9420, 5760, 2352, 576, 64;
1, 21, 203, 1197, 4809, 13923, 29953, 48639, 59906, 55692, 38472, 19152, 6496, 1344, 128;
1, 24, 268, 1848, 8806, 30744, 81340, 166344, 265729, 332688, 325360, 245952, 140896, 59136, 17152, 3072, 256; ...
where row n equals the coefficients in (1+x)^n*(1+2*x)^n.
-
{T(n,k)=polcoeff((1+3*x+2*x^2+x*O(x^k))^n,k)}
{for(n=0,10,for(k=0,2*n,print1(T(n,k),","));print(""))}
A316911
Define K(n) = Integral_{t=0..1} (-1/2)^n/(1+t)*((1-t)^2*t^2/(1+t))^n*dt and write K(n) = d(n)*log(2) - a(n)/c(n) where a(n), d(n), c(n) are positive integers; sequence gives a(n).
Original entry on oeis.org
0, 25, 1719, 143731, 64456699, 1846991851, 781688106621, 445837607665267, 611642484654021, 674842075634295726569, 9142845536119405749427, 38984536004906714808649, 80321414381403813427242343, 342487507476162248453574514441, 562411667990487545372378396727201
Offset: 0
{a(10),c(10),d(10)}={9142845536119405749427,307660953600,42872967012}.
r(10)=a(10)/c(10)/d(10)=9142845536119405749427/13190337914573262643200.
r(10)=0.693147180559945309417232121402...
log(2)=0.693147180559945309417232121458...
M(10)=-log(|r(10)-log(2)|)/log(13190337914573262643200)=1.27...
-
FracData[n0_]:=RecurrenceTable[{2*(n-1)*(2*n-3)*(2*n-1)*(33*n-8)*a[n-2]+ 9*(2*n-1)*(693*n^3-1554*n^2+989*n-160)*a[n-1] -3*n*(3*n-2)*(3*n-1)*(33*n-41)*a[n] == 0, a[0]==0, a[1]==25/6}, a, {n, 0, n0}]
Numerator[FracData[5000]]
A316912
Define K(n) = Integral_{t=0..1} (-1/2)^n/(1+t)*((1-t)^2*t^2/(1+t))^n*dt and write K(n) = d(n)*log(2) - b(n)/a(n) where a(n), d(n), b(n) are positive integers; sequence gives a(n).
Original entry on oeis.org
1, 6, 40, 288, 10560, 24024, 792064, 34728960, 3627008, 302356454400, 307660953600, 98050867200, 15038824120320, 4757532010463232, 577952036826644480, 26189033224273920, 358597702262241361920, 244498433360619110400, 143982410756809031680
Offset: 0
-
FracData[n0_]:=RecurrenceTable[{2*(n-1)*(2*n-3)*(2*n-1)*(33*n-8)*a[n-2]+ 9*(2*n-1)*(693*n^3-1554*n^2+989*n-160)*a[n-1] -3*n*(3*n-2)*(3*n-1)*(33*n-41)*a[n] == 0, a[0]==0, a[1]==25/6}, a, {n, 0, n0}]
Denominator[FracData[5000]]
Showing 1-3 of 3 results.
Comments