cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A200536 Triangle, read by rows of 2*n+1 terms, where row n lists the coefficients in (1+3*x+2*x^2)^n.

Original entry on oeis.org

1, 1, 3, 2, 1, 6, 13, 12, 4, 1, 9, 33, 63, 66, 36, 8, 1, 12, 62, 180, 321, 360, 248, 96, 16, 1, 15, 100, 390, 985, 1683, 1970, 1560, 800, 240, 32, 1, 18, 147, 720, 2355, 5418, 8989, 10836, 9420, 5760, 2352, 576, 64, 1, 21, 203, 1197, 4809, 13923, 29953, 48639, 59906, 55692, 38472, 19152, 6496, 1344, 128
Offset: 0

Views

Author

Paul D. Hanna, Nov 18 2011

Keywords

Examples

			The triangle begins:
1;
1, 3, 2;
1, 6, 13, 12, 4;
1, 9, 33, 63, 66, 36, 8;
1, 12, 62, 180, 321, 360, 248, 96, 16;
1, 15, 100, 390, 985, 1683, 1970, 1560, 800, 240, 32;
1, 18, 147, 720, 2355, 5418, 8989, 10836, 9420, 5760, 2352, 576, 64;
1, 21, 203, 1197, 4809, 13923, 29953, 48639, 59906, 55692, 38472, 19152, 6496, 1344, 128;
1, 24, 268, 1848, 8806, 30744, 81340, 166344, 265729, 332688, 325360, 245952, 140896, 59136, 17152, 3072, 256; ...
where row n equals the coefficients in (1+x)^n*(1+2*x)^n.
		

Crossrefs

Cf. A001850 (central Delannoy numbers), A006318, A190726; related triangle: A118384.
Cf. A200537.

Programs

  • PARI
    {T(n,k)=polcoeff((1+3*x+2*x^2+x*O(x^k))^n,k)}
    {for(n=0,10,for(k=0,2*n,print1(T(n,k),","));print(""))}

Formula

Central terms in rows form the central Delannoy numbers: T(n,n) = A001850(n).
T(2*n,n) = A190726(n).
T(n,n+1) = n*A006318(n), where A006318 form the large Schroeder numbers.

A316911 Define K(n) = Integral_{t=0..1} (-1/2)^n/(1+t)*((1-t)^2*t^2/(1+t))^n*dt and write K(n) = d(n)*log(2) - a(n)/c(n) where a(n), d(n), c(n) are positive integers; sequence gives a(n).

Original entry on oeis.org

0, 25, 1719, 143731, 64456699, 1846991851, 781688106621, 445837607665267, 611642484654021, 674842075634295726569, 9142845536119405749427, 38984536004906714808649, 80321414381403813427242343, 342487507476162248453574514441, 562411667990487545372378396727201
Offset: 0

Views

Author

Bradley Klee, Jul 16 2018

Keywords

Comments

As n goes to infinity, integral value K(n) goes to zero. Given a rational approximant r(n)=a(n)/c(n)/d(n)=p(n)/q(n) to irrational number log(2), the quality M(n) is defined as, M(n)=-log(|r(n)-log(2)|)/log(q(n)) (Cf. Beukers Link). For this approximation, we can easily measure M(n) over n=5,000..20,000, and estimate that M(n)~1.14... to the 99% confidence level (Cf. Histogram Link).

Examples

			{a(10),c(10),d(10)}={9142845536119405749427,307660953600,42872967012}.
r(10)=a(10)/c(10)/d(10)=9142845536119405749427/13190337914573262643200.
r(10)=0.693147180559945309417232121402...
log(2)=0.693147180559945309417232121458...
M(10)=-log(|r(10)-log(2)|)/log(13190337914573262643200)=1.27...
		

Crossrefs

Integer Part: A190726. Denominators: A316912. Similar Pi approximation: A123178, A305997, A305998.

Programs

  • Mathematica
    FracData[n0_]:=RecurrenceTable[{2*(n-1)*(2*n-3)*(2*n-1)*(33*n-8)*a[n-2]+ 9*(2*n-1)*(693*n^3-1554*n^2+989*n-160)*a[n-1] -3*n*(3*n-2)*(3*n-1)*(33*n-41)*a[n] == 0, a[0]==0, a[1]==25/6}, a, {n, 0, n0}]
    Numerator[FracData[5000]]

Formula

Define G(x) = Sum_{n>0} A316911(n)/A316912(n)*x^n, and G^(k)(x) = d^k/dx^k G(x). Period G(x) satisfies a nonhomogeneous differential equation: -225+112*x = Sum_{j=0..5,k=0..3} M_{j,k} x^j G^(k)(x), with integer matrix M as in A190726.

A316912 Define K(n) = Integral_{t=0..1} (-1/2)^n/(1+t)*((1-t)^2*t^2/(1+t))^n*dt and write K(n) = d(n)*log(2) - b(n)/a(n) where a(n), d(n), b(n) are positive integers; sequence gives a(n).

Original entry on oeis.org

1, 6, 40, 288, 10560, 24024, 792064, 34728960, 3627008, 302356454400, 307660953600, 98050867200, 15038824120320, 4757532010463232, 577952036826644480, 26189033224273920, 358597702262241361920, 244498433360619110400, 143982410756809031680
Offset: 0

Views

Author

Bradley Klee, Jul 16 2018

Keywords

Crossrefs

Integer Part: A190726. Numerators: A316911. Similar Pi Approximation: A123178, A305997, A305998.

Programs

  • Mathematica
    FracData[n0_]:=RecurrenceTable[{2*(n-1)*(2*n-3)*(2*n-1)*(33*n-8)*a[n-2]+ 9*(2*n-1)*(693*n^3-1554*n^2+989*n-160)*a[n-1] -3*n*(3*n-2)*(3*n-1)*(33*n-41)*a[n] == 0, a[0]==0, a[1]==25/6}, a, {n, 0, n0}]
    Denominator[FracData[5000]]
Showing 1-3 of 3 results.