A316917 Let g(n) be the n-th maximal prime gap; a(n) = 1 if g(n) has record merit, 0 if it does not.
1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1
Offset: 1
Examples
The 5th record prime gap from 89 to 97 does not have record merit, so a(5) = 0. The 10th record prime gap from 1327 to 1361 has record merit, so a(10) = 1.
Links
- Prime Gap List Community, Record prime gaps, 2021.
- Index entries for characteristic functions
Programs
-
Mathematica
Block[{nn = 10^6, s, t, u, v}, s = Prime@ Range[nn]; t = Differences@ s; u = Map[(#2 - #1)/Log[#1] & @@ # &, Partition[Prime@ Range[nn], 2, 1]]; v = Map[Prime@ FirstPosition[u, #][[1]] &, Union@ FoldList[Max, u]]; Boole[! FreeQ[v, s[[FirstPosition[t, #][[1]] ]] ] ] & /@ Union@ FoldList[Max, t]] (* Michael De Vlieger, Jul 19 2018 *)
Extensions
a(81) from Rodolfo Ruiz-Huidobro, Jan 23 2024
a(82) from Rodolfo Ruiz-Huidobro, May 10 2024
a(83) from Rodolfo Ruiz-Huidobro, Dec 09 2024
Comments