A316946 A triple of positive integers (n,p,k) is admissible if there exist at least two different multisets of k positive integers, {x_1,x_2,...,x_k} and {y_1,y_2,...,y_k}, such that x_1+x_2+...+x_k = y_1+y_2+...+y_k = n and x_1x_2...x_k = y_1y_2...y_k = p. For each n, let A(n) = {p:(n,p,k) is admissible for some k}, and let a(n) = |A(n)|.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 5, 6, 10, 14, 19, 26, 33, 43, 54, 68, 87, 106, 129, 157, 187, 226, 269, 319, 378, 445, 521, 610, 712, 825, 952, 1099, 1261, 1443, 1655, 1889, 2148, 2440, 2769, 3135, 3542, 4000, 4494, 5049, 5661, 6346, 7099, 7938, 8857, 9862, 10972, 12190, 13532, 15000, 16611, 18366
Offset: 1
Keywords
Examples
a(15) = 6 since A(15) = {36,40,48,72,96,144}: p = 36 [9, 2, 2, 1, 1], [6, 6, 1, 1, 1] p = 40 [10, 2, 2, 1], [8, 5, 1, 1] p = 48 [6, 2, 2, 2, 1, 1, 1], [4, 4, 3, 1, 1, 1, 1] p = 72 [9, 2, 2, 2], [8, 3, 3, 1], [6, 6, 2, 1], p = 96 [8, 3, 2, 2], [6, 4, 4, 1], [6, 2, 2, 2, 2, 1], [4, 4, 3, 2, 1, 1] p = 144 [6, 3, 2, 2, 2], [4, 4, 3, 3, 1].
Links
- Jay Bennett, Riddle of the week #34: Two wizards ride a bus, Popular Mechanics. Hearst Communications, Inc., 4 Aug. 2017. 12 Jun. 2018 Accessed.
- John B. Kelly, Partitions with equal products, Proc. Amer. Math. Soc. 15 (1964), 987-990.
Programs
-
Mathematica
Do[repeats = {}; Do[intpart = IntegerPartitions[sum, {n}]; prod = Tally[Table[Times @@ intpart[[i]], {i, Length[intpart]}]]; repeatprod = Select[prod, #[[2]] > 1 &]; If[repeatprod != {}, repeats = Join[repeats, Transpose[repeatprod][[1]]]], {n, 3, sum - 8}]; output = DeleteDuplicates[repeats]; Print[sum, " ", Length[output]], {sum, 12, 100}]
Comments