A316969 Primes p such that p^2 contains all of the square digits {0, 1, 4, 9} only.
701, 7001, 10007, 10243, 20347, 70001, 97001, 202757, 306749, 379499, 700001, 997001, 1002247, 1070021, 3317257, 3346507, 9536249, 9970001, 10095247, 20470501, 21095021, 22144979, 94925771, 100000007, 100099501, 104933743, 202520347, 300191597
Offset: 1
Examples
701^2 = 491401 that contains all the square digits {0, 1, 4, 9} only. Hence, 701 is a term. 10243^2 = 104919049 that contains all of the square digits {0, 1, 4, 9} only. Hence, 10243 is a term. 997 is not a term because 997^2 = 994009 does not contain the digit '1'.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..501 (terms < 10^16)
Programs
-
Mathematica
Select[Prime[Range[20000000]], Union[IntegerDigits[#^2]] == {0, 1, 4, 9} &]
Comments