cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316972 Number of connected multiset partitions of {1, 1, 2, 2, 3, 3, ..., n, n}.

Original entry on oeis.org

1, 2, 5, 28, 277, 3985, 76117, 1833187, 53756682, 1871041538, 75809298105, 3521419837339, 185235838688677, 10923147890901151, 715989783027216302, 51793686238309903860, 4109310551278549543317, 355667047514571431358297, 33422937748872646130124797
Offset: 0

Views

Author

Gus Wiseman, Jul 17 2018

Keywords

Comments

Note that all connected multiset partitions of {1, 1, 2, 2, 3, 3, ..., n, n} are strict except for (123...n)(123...n).

Examples

			The a(2) = 5 connected multiset partitions of {1, 1, 2, 2} are (1122), (1)(122), (2)(112), (12)(12), (1)(2)(12). The multiset partitions (11)(22), (1)(1)(22), (2)(2)(11), (1)(1)(2)(2) are not connected.
		

Crossrefs

Programs

  • Mathematica
    nn=10;
    ser=Exp[-3/2+Exp[x]/2]*Sum[Exp[Binomial[n+1,2]*x]/n!,{n,0,3*nn}];
    Round/@(CoefficientList[Series[1+Log[ser],{x,0,nn}],x]*Array[Factorial,nn+1,0]) (* based on Jean-François Alcover after Vladeta Jovovic *)
    (*second program *)
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Length/@Table[Select[mps[Ceiling[Range[1/2,n,1/2]]],Length[csm[#]]==1&],{n,4}]

Formula

Logarithmic transform of A020555.