cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316975 a(n) is the minimum number of occurrences of the same value (r0-r1+n) mod n for all pairs (r0,r1) of quadratic residues mod n.

Original entry on oeis.org

1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 3, 1, 3, 4, 1, 1, 4, 2, 5, 1, 2, 6, 6, 1, 2, 6, 2, 2, 7, 2, 8, 1, 3, 8, 2, 1, 9, 10, 3, 1, 10, 4, 11, 3, 1, 12, 12, 1, 8, 4, 4, 3, 13, 4, 3, 2, 5, 14, 15, 1, 15, 16, 2, 1, 3, 6, 17, 4, 6, 4, 18, 1, 18, 18, 2, 5, 6, 6, 20, 1, 4, 20
Offset: 1

Views

Author

Arnauld Chevallier, Jul 17 2018

Keywords

Comments

Multiplicative by the Chinese remainder theorem since if gcd(m,n) = 1 then r is a quadratic residue mod m*n iff it is a quadratic residue mod m and a quadratic residue mod n. - Andrew Howroyd, Aug 07 2018

Examples

			The quadratic residues mod 10 are 0, 1, 4, 5, 6 and 9. For each pair (r0,r1) of these quadratic residues, we compute (r0-r1+10) mod 10, leading to:
      0 1 4 5 6 9
    +------------
  0 | 0 9 6 5 4 1
  1 | 1 0 7 6 5 2
  4 | 4 3 0 9 8 5
  5 | 5 4 1 0 9 6
  6 | 6 5 2 1 0 7
  9 | 9 8 5 4 3 0
The minimum number of occurrences of the same value in the above table is 2 (for 2, 3, 7 and 8). Therefore a(10) = 2.
		

Crossrefs

Cf. A096008.

Programs

  • Mathematica
    Table[Min@ Tally[#][[All, -1]] &@ Flatten[Mod[#, n] & /@ Outer[Subtract, #, #]] &@ Union@ PowerMod[Range@ n, 2, n], {n, 82}] (* Michael De Vlieger, Jul 20 2018 *)
  • PARI
    a(n)={my(r=Set(vector(n,i,i^2%n))); my(v=vector(n)); for(i=1, #r, for(j=1, #r, v[(r[i]-r[j])%n + 1]++)); vecmin(select(t->t>0, v))} \\ Andrew Howroyd, Aug 07 2018