A316975 a(n) is the minimum number of occurrences of the same value (r0-r1+n) mod n for all pairs (r0,r1) of quadratic residues mod n.
1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 3, 1, 3, 4, 1, 1, 4, 2, 5, 1, 2, 6, 6, 1, 2, 6, 2, 2, 7, 2, 8, 1, 3, 8, 2, 1, 9, 10, 3, 1, 10, 4, 11, 3, 1, 12, 12, 1, 8, 4, 4, 3, 13, 4, 3, 2, 5, 14, 15, 1, 15, 16, 2, 1, 3, 6, 17, 4, 6, 4, 18, 1, 18, 18, 2, 5, 6, 6, 20, 1, 4, 20
Offset: 1
Examples
The quadratic residues mod 10 are 0, 1, 4, 5, 6 and 9. For each pair (r0,r1) of these quadratic residues, we compute (r0-r1+10) mod 10, leading to: 0 1 4 5 6 9 +------------ 0 | 0 9 6 5 4 1 1 | 1 0 7 6 5 2 4 | 4 3 0 9 8 5 5 | 5 4 1 0 9 6 6 | 6 5 2 1 0 7 9 | 9 8 5 4 3 0 The minimum number of occurrences of the same value in the above table is 2 (for 2, 3, 7 and 8). Therefore a(10) = 2.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A096008.
Programs
-
Mathematica
Table[Min@ Tally[#][[All, -1]] &@ Flatten[Mod[#, n] & /@ Outer[Subtract, #, #]] &@ Union@ PowerMod[Range@ n, 2, n], {n, 82}] (* Michael De Vlieger, Jul 20 2018 *)
-
PARI
a(n)={my(r=Set(vector(n,i,i^2%n))); my(v=vector(n)); for(i=1, #r, for(j=1, #r, v[(r[i]-r[j])%n + 1]++)); vecmin(select(t->t>0, v))} \\ Andrew Howroyd, Aug 07 2018
Comments