A316987 G.f.: A(x) = Sum_{n>=0} binomial(2*(n+1), n)/(n+1) * x^n / (1+x)^(3*(n+1)).
1, -1, -1, 1, 2, 0, -4, -4, 5, 15, 4, -34, -49, 35, 174, 106, -363, -729, 173, 2311, 2266, -4048, -11573, -2001, 32110, 45110, -41692, -187550, -103297, 445119, 864056, -301392, -3033429, -2820827, 5900903, 16076357, 1596760, -48162378, -64931570, 69966798, 291036757, 143307879, -737616558, -1374497088, 610620123, 5114691723, 4475615447, -10618782829
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 - x - x^2 + x^3 + 2*x^4 - 4*x^6 - 4*x^7 + 5*x^8 + 15*x^9 + 4*x^10 - 34*x^11 - 49*x^12 + 35*x^13 + 174*x^14 + 106*x^15 - 363*x^16 + ... such that A(x) = 1/(1+x)^3 + 2*x/(1+x)^6 + 5*x^2/(1+x)^9 + 14*x^3/(1+x)^12 + 42*x^4/(1+x)^15 + 132*x^5/(1+x)^18 + ... + A000108(n+1)*x^n/(1+x)^(3*(n+1)) + ... RELATED SERIES. Series_Reversion( x*A(x) ) = x + x^2 + 3*x^3 + 9*x^4 + 30*x^5 + 105*x^6 + 382*x^7 + 1429*x^8 + 5463*x^9 + 21248*x^10 + ... + A316371(n)*x^n + ... which equals the sum: Sum_{n>=0} binomial(3*(n+1), n)/(n+1) * x^(n+1)/(1+x)^(2*(n+1)).
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..500
Crossrefs
Cf. A316371.
Programs
-
PARI
{a(n) = my(A = sum(m=0, n, binomial(2*(m+1), m)/(m+1) * x^m / (1+x +x*O(x^n))^(3*(m+1)))); polcoeff(A, n)} for(n=0, 30, print1(a(n), ", "))
Formula
G.f. A(x) satisfies:
(1) A(x) = Sum_{n>=0} binomial(2*(n+1), n)/(n+1) * x^n / (1+x)^(3*(n+1)).
(2) A(x) = (1 + x^2*A(x)^2) / (1 + x + 3*x^2 + x^3).
(3) A(x) = (1 + x + 3*x^2 + x^3 - (1+x)*sqrt(1 + 2*x^2 + 4*x^3 + x^4))/(2*x^2).
Comments