A317016 Triangle read by rows: T(0,0) = 1; T(n,k) = T(n-1,k) + 7 * T(n-2,k-1) for k = 0..floor(n/2). T(n,k)=0 for n or k < 0.
1, 1, 1, 7, 1, 14, 1, 21, 49, 1, 28, 147, 1, 35, 294, 343, 1, 42, 490, 1372, 1, 49, 735, 3430, 2401, 1, 56, 1029, 6860, 12005, 1, 63, 1372, 12005, 36015, 16807, 1, 70, 1764, 19208, 84035, 100842, 1, 77, 2205, 28812, 168070, 352947, 117649, 1, 84, 2695, 41160, 302526, 941192, 823543
Offset: 0
Examples
Triangle begins: 1; 1; 1, 7; 1, 14; 1, 21, 49; 1, 28, 147; 1, 35, 294, 343; 1, 42, 490, 1372; 1, 49, 735, 3430, 2401; 1, 56, 1029, 6860, 12005; 1, 63, 1372, 12005, 36015, 16807; 1, 70, 1764, 19208, 84035, 100842; 1, 77, 2205, 28812, 168070, 352947, 117649; 1, 84, 2695, 41160, 302526, 941192, 823543;
References
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pages 70, 96.
Links
Programs
-
GAP
Flat(List([0..13],n->List([0..Int(n/2)],k->7^k*Binomial(n-k,k)))); # Muniru A Asiru, Jul 19 2018
-
Mathematica
t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, t[n - 1, k] + 7 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 13}, {k, 0, Floor[n/2]}] // Flatten Table[7^k Binomial[n - k, k], {n, 0, 13}, {k, 0, Floor[n/2]}] // Flatten
Formula
T(n,k) = 7^k*binomial(n-k,k), n >= 0, 0 <= k <= floor(n/2).
Comments