cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A317017 Expansion of Product_{k>=1} 1/(1 - x^k)^((3*k+1)*binomial(k+2,3)/4).

Original entry on oeis.org

1, 1, 8, 33, 126, 441, 1571, 5338, 17900, 58359, 187134, 588966, 1826537, 5580784, 16831549, 50135506, 147650112, 430187724, 1240908651, 3545808444, 10042128414, 28201458999, 78567720054, 217225969695, 596254164090, 1625343030654, 4401332943214, 11843216471115, 31674767502610
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 19 2018

Keywords

Comments

Euler transform of A001296.

Crossrefs

Programs

  • Maple
    a:=series(mul(1/(1-x^k)^((3*k+1)*binomial(k+2,3)/4),k=1..100),x=0,29): seq(coeff(a,x,n),n=0..28); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 28; CoefficientList[Series[Product[1/(1 - x^k)^((3 k + 1) Binomial[k + 2, 3]/4), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 28; CoefficientList[Series[Exp[Sum[x^k (1 + 2 x^k)/(k (1 - x^k)^5), {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d^2 (d + 1) (d + 2) (3 d + 1)/24, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 28}]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^A001296(k).
G.f.: exp(Sum_{k>=1} x^k*(1 + 2*x^k)/(k*(1 - x^k)^5)).
a(n) ~ Pi^(1/288)/(2 * 3^(577/864) * 7^(145/1728) * n^(1009/1728)) * exp(1/144 - (1/12-Zeta'(-1))/12 - (11 * Zeta(3))/(80 * Pi^2) + (1383 * Zeta(5))/(640 * Pi^4) + (11025 * Zeta(3) * Zeta(5)^2)/(2 * Pi^12) - (694575 * Zeta(5)^3)/(2 * Pi^14) + (13127467500 * Zeta(5)^5)/Pi^24 + (5 * Zeta'(-3))/12 + ((-21 * 3^(1/3) * 7^(1/6) * Pi)/6400 - (35 * 3^(1/3) * 7^(1/6) * Zeta(3) * Zeta(5))/(2 * Pi^7) + (15435 * 3^(1/3) * 7^(1/6) * Zeta(5)^2)/(16 * Pi^9) - (175573125 * 3^(1/3) * 7^(1/6) * Zeta(5)^4)/(4 * Pi^19)) * n^(1/6) + (((7/3)^(1/3) * Zeta(3))/(4 * Pi^2) - (21 * 3^(2/3) * 7^(1/3) * Zeta(5))/(8 * Pi^4) + (147000 * 3^(2/3) * 7^(1/3) * Zeta(5)^3)/Pi^14) * n^(1/3) + ((sqrt(7) * Pi)/40 - (1575 * sqrt(7) * Zeta(5)^2)/Pi^9) * sqrt(n) + ((15 * 3^(1/3) * 7^(2/3) * Zeta(5))/(2 * Pi^4)) * n^(2/3) + ((2 * 3^(2/3) * Pi)/(5 * 7^(1/6))) * n^(5/6)). - Vaclav Kotesovec, Jul 28 2018

A317019 Expansion of Product_{k>=1} 1/(1 - x^k)^(k*binomial(k+2,3)).

Original entry on oeis.org

1, 1, 9, 39, 155, 570, 2131, 7599, 26667, 90996, 305144, 1004173, 3254123, 10385884, 32704819, 101678860, 312435675, 949498206, 2855953018, 8507079361, 25108844890, 73468004480, 213201630328, 613871526178, 1754365814430, 4978113020152, 14029639217532, 39281646364737
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 19 2018

Keywords

Comments

Euler transform of A002417.

Crossrefs

Programs

  • Maple
    a:=series(mul(1/(1-x^k)^(k*binomial(k+2,3)),k=1..100),x=0,28): seq(coeff(a,x,n),n=0..27); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 27; CoefficientList[Series[Product[1/(1 - x^k)^(k Binomial[k + 2, 3]), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 27; CoefficientList[Series[Exp[Sum[x^k (1 + 3 x^k)/(k (1 - x^k)^5), {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d^3 (d + 1) (d + 2)/6, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 27}]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^A002417(k).
G.f.: exp(Sum_{k>=1} x^k*(1 + 3*x^k)/(k*(1 - x^k)^5)).
a(n) ~ 1/(2^(601/720) * 3^(359/480) * 7^(119/1440) * n^(839/1440) * Pi^(1/240)) * exp(-Zeta(3)/(12 * Pi^2) + (491 * Zeta(5))/(400 * Pi^4) - (2250423 * Zeta(5)^3)/(10 * Pi^14) + (103355177121 * Zeta(5)^5)/(10 * Pi^24) + Zeta'(-3)/2 + ((-7 * 7^(1/6) * Pi)/(1200 * 2^(1/3) * sqrt(3)) + (27783 * sqrt(3) * 7^(1/6) * Zeta(5)^2)/(40 * 2^(1/3) * Pi^9) - (614365479 * sqrt(3) * 7^(1/6) * Zeta(5)^4)/(16 * 2^(1/3) * Pi^19)) * n^(1/6) + ((-63 * 7^(1/3) * Zeta(5))/(10 * 2^(2/3) * Pi^4) + (214326 * 14^(1/3) * Zeta(5)^3)/Pi^14) * n^(1/3) + ((sqrt(7/3) * Pi)/30 - (1701 * sqrt(21) * Zeta(5)^2)/(2 * Pi^9)) * sqrt(n) + ((27 * 7^(2/3) * Zeta(5))/(2 * 2^(1/3) * Pi^4)) * n^(2/3) + ((2 * 2^(1/3) * sqrt(3) * Pi)/(5 * 7^(1/6))) * n^(5/6)). - Vaclav Kotesovec, Jul 28 2018

A317020 Expansion of Product_{k>=1} 1/(1 - x^k)^((5*k-1)*binomial(k+2,3)/4).

Original entry on oeis.org

1, 1, 10, 45, 185, 710, 2766, 10270, 37444, 132765, 462327, 1579563, 5311361, 17584084, 57414594, 185032557, 589183035, 1854974066, 5778722817, 17823440534, 54458411332, 164917654587, 495219323844, 1475145786950, 4360576440676, 12796007418881, 37287660835368, 107930276062786
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 19 2018

Keywords

Comments

Euler transform of A002418.

Crossrefs

Programs

  • Maple
    a:=series(mul(1/(1-x^k)^((5*k-1)*binomial(k+2,3)/4),k=1..100),x=0,28): seq(coeff(a,x,n),n=0..27); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 27; CoefficientList[Series[Product[1/(1 - x^k)^((5 k - 1) Binomial[k + 2, 3]/4), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 27; CoefficientList[Series[Exp[Sum[x^k (1 + 4 x^k)/(k (1 - x^k)^5), {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d^2 (d + 1) (d + 2) (5 d - 1)/24, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 27}]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^A002418(k).
G.f.: exp(Sum_{k>=1} x^k*(1 + 4*x^k)/(k*(1 - x^k)^5)).
a(n) ~ (5/7)^(703/8640)/(2 * 3^(2143/2880) * n^(5023/8640) * Pi^(17/1440)) * exp(-1/144 + (1/12-Zeta'(-1))/12 - (21 * Zeta(3))/(400 * Pi^2) + (62921 * Zeta(5))/(80000 * Pi^4) - (194481 * Zeta(3) * Zeta(5)^2)/(50 * Pi^12) - (200120949 * Zeta(5)^3)/(1250 * Pi^14) + (28594081676916 * Zeta(5)^5)/(3125 * Pi^24) + (7 * Zeta'(-3))/12 + ((-343 * (7/5)^(1/6) * Pi)/(96000 * sqrt(3)) + (147 * (7/5)^(1/6) * sqrt(3) * Zeta(3) * Zeta(5))/(10 * Pi^7) + (1058841 * (7/5)^(1/6) * sqrt(3) * Zeta(5)^2)/(2000 * Pi^9) - (18211006359 * (7/5)^(1/6) * sqrt(3) * Zeta(5)^4)/(500 * Pi^19)) * n^(1/6) + (-((7/5)^(1/3) * Zeta(3))/(4 * Pi^2) - (1029 * (7/5)^(1/3) * Zeta(5))/(200 * Pi^4) + (10890936 * (7/5)^(1/3) * Zeta(5)^3)/(25 * Pi^14)) * n^(1/3) + ((7 * sqrt(7/15) * Pi)/120 - (9261 * sqrt(21/5) * Zeta(5)^2)/(5 * Pi^9)) * sqrt(n) + ((63 * (7/5)^(2/3) * Zeta(5))/(2 * Pi^4)) * n^(2/3) + ((2 * sqrt(3) * Pi)/(5^(5/6) * 7^(1/6))) * n^(5/6)). - Vaclav Kotesovec, Jul 28 2018
Showing 1-3 of 3 results.