A317026 Triangle read by rows: T(0,0) = 1; T(n,k) = T(n-1,k) + 8 * T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.
1, 1, 1, 8, 1, 16, 1, 24, 64, 1, 32, 192, 1, 40, 384, 512, 1, 48, 640, 2048, 1, 56, 960, 5120, 4096, 1, 64, 1344, 10240, 20480, 1, 72, 1792, 17920, 61440, 32768, 1, 80, 2304, 28672, 143360, 196608, 1, 88, 2880, 43008, 286720, 688128, 262144, 1, 96, 3520, 61440, 516096, 1835008, 1835008
Offset: 0
Examples
Triangle begins: 1; 1; 1, 8; 1, 16; 1, 24, 64; 1, 32, 192; 1, 40, 384, 512; 1, 48, 640, 2048; 1, 56, 960, 5120, 4096; 1, 64, 1344, 10240, 20480; 1, 72, 1792, 17920, 61440, 32768; 1, 80, 2304, 28672, 143360, 196608; 1, 88, 2880, 43008, 286720, 688128, 262144; 1, 96, 3520, 61440, 516096, 1835008, 1835008;
References
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, Pages 70, 98
Links
Programs
-
GAP
Flat(List([0..13],n->List([0..Int(n/2)],k->8^k*Binomial(n-k,k)))); # Muniru A Asiru, Jul 19 2018
-
Mathematica
t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, t[n - 1, k] + 8 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 13}, {k, 0, Floor[n/2]}] // Flatten Table[8^k Binomial[n - k, k], {n, 0, 13}, {k, 0, Floor[n/2]}] // Flatten
Formula
T(n,k) = 8^k*binomial(n-k,k), n >= 0, 0 <= k <= floor(n/2).
Comments