cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317026 Triangle read by rows: T(0,0) = 1; T(n,k) = T(n-1,k) + 8 * T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.

Original entry on oeis.org

1, 1, 1, 8, 1, 16, 1, 24, 64, 1, 32, 192, 1, 40, 384, 512, 1, 48, 640, 2048, 1, 56, 960, 5120, 4096, 1, 64, 1344, 10240, 20480, 1, 72, 1792, 17920, 61440, 32768, 1, 80, 2304, 28672, 143360, 196608, 1, 88, 2880, 43008, 286720, 688128, 262144, 1, 96, 3520, 61440, 516096, 1835008, 1835008
Offset: 0

Views

Author

Zagros Lalo, Jul 19 2018

Keywords

Comments

The numbers in rows of the triangle are along skew diagonals pointing top-right in center-justified triangle given in A013615 ((1+8*x)^n) and along skew diagonals pointing top-left in center-justified triangle given in A038279 ((8+x)^n).
The coefficients in the expansion of 1/(1-x-8*x^2) are given by the sequence generated by the row sums.
The row sums are Generalized Fibonacci numbers (see A015443).
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 3.3722813232690143..., when n approaches infinity; see A235162 (Decimal expansion of (sqrt(33)+1)/2).

Examples

			Triangle begins:
  1;
  1;
  1, 8;
  1, 16;
  1, 24, 64;
  1, 32, 192;
  1, 40, 384, 512;
  1, 48, 640, 2048;
  1, 56, 960, 5120, 4096;
  1, 64, 1344, 10240, 20480;
  1, 72, 1792, 17920, 61440, 32768;
  1, 80, 2304, 28672, 143360, 196608;
  1, 88, 2880, 43008, 286720, 688128, 262144;
  1, 96, 3520, 61440, 516096, 1835008, 1835008;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, Pages 70, 98

Crossrefs

Row sums give A015443.

Programs

  • GAP
    Flat(List([0..13],n->List([0..Int(n/2)],k->8^k*Binomial(n-k,k)))); # Muniru A Asiru, Jul 19 2018
  • Mathematica
    t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, t[n - 1, k] + 8 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 13}, {k, 0, Floor[n/2]}] // Flatten
    Table[8^k Binomial[n - k, k], {n, 0, 13}, {k, 0, Floor[n/2]}] // Flatten

Formula

T(n,k) = 8^k*binomial(n-k,k), n >= 0, 0 <= k <= floor(n/2).