cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317073 Number of antichains of multisets with multiset-join a normal multiset of size n.

Original entry on oeis.org

1, 1, 3, 16, 198, 9890, 8592538
Offset: 0

Views

Author

Gus Wiseman, Jul 20 2018

Keywords

Comments

An antichain of multisets is a finite set of finite nonempty multisets, none of which is a submultiset of any other. A multiset is normal if it spans an initial interval of positive integers. The multiset-join of a set of multisets has the same vertices with multiplicities equal to the maxima of the multiplicities in the edges.

Examples

			The a(3) = 16 antichains of multisets:
  (111),
  (122), (12)(22), (1)(22),
  (112), (11)(12), (2)(11),
  (123), (13)(23), (12)(23), (12)(13), (12)(13)(23), (3)(12), (2)(13), (1)(23), (1)(2)(3).
		

Crossrefs

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    multijoin[mss__]:=Join@@Table[Table[x,{Max[Count[#,x]&/@{mss}]}],{x,Union[mss]}]
    submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]];
    allnorm[n_]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    auu[m_]:=Select[stableSets[Union[Rest[Subsets[m]]],submultisetQ],multijoin@@#==m&];
    Table[Length[Join@@Table[auu[m],{m,allnorm[n]}]],{n,5}]

Extensions

a(6) from Robert Price, Jun 21 2021