A317073 Number of antichains of multisets with multiset-join a normal multiset of size n.
1, 1, 3, 16, 198, 9890, 8592538
Offset: 0
Examples
The a(3) = 16 antichains of multisets: (111), (122), (12)(22), (1)(22), (112), (11)(12), (2)(11), (123), (13)(23), (12)(23), (12)(13), (12)(13)(23), (3)(12), (2)(13), (1)(23), (1)(2)(3).
Links
- Goran Kilibarda and Vladeta Jovovic, Antichains of Multisets, Journal of Integer Sequences, Vol. 7 (2004).
Crossrefs
Programs
-
Mathematica
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]]; multijoin[mss__]:=Join@@Table[Table[x,{Max[Count[#,x]&/@{mss}]}],{x,Union[mss]}] submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]]; allnorm[n_]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]; auu[m_]:=Select[stableSets[Union[Rest[Subsets[m]]],submultisetQ],multijoin@@#==m&]; Table[Length[Join@@Table[auu[m],{m,allnorm[n]}]],{n,5}]
Extensions
a(6) from Robert Price, Jun 21 2021
Comments