cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317087 Numbers whose prime factors span an initial interval of prime numbers and whose sequence of prime multiplicities is a palindrome.

Original entry on oeis.org

1, 2, 4, 6, 8, 16, 30, 32, 36, 64, 90, 128, 210, 216, 256, 270, 300, 512, 810, 900, 1024, 1296, 2048, 2310, 2430, 2700, 2940, 3000, 3150, 4096, 7290, 7776, 8100, 8192, 9000, 11550, 16384, 21870, 24300, 27000, 30000, 30030, 32768, 41160, 44100, 46656, 47250, 48510
Offset: 1

Views

Author

Gus Wiseman, Jul 21 2018

Keywords

Comments

3^m*10^k for k, m > 0 are terms of this sequence. - Chai Wah Wu, Jun 23 2020

Examples

			The sequence of rows of A296150 indexed by the terms of this sequence begins: (1), (11), (21), (111), (1111), (321), (11111), (2211), (111111), (3221), (1111111), (4321), (222111), (11111111), (32221), (33211), (111111111), (322221), (332211).
		

Crossrefs

Programs

  • Mathematica
    nrmpalQ[n_]:=With[{f=If[n==1,{},FactorInteger[n]]}, And[PrimePi/@ Sort[First/@f] == Range[ Length[f]], Reverse[Last/@f] == Last/@f]]; Select[Range[100],nrmpalQ]
    upto = 10^20; pL[n_] := Block[{p = Prime@Range@n, h = Ceiling[n/2]}, Take[p, h] Reverse@ If[n == 2 h, Take[p, -h], Prepend[ Take[p, 1-h], 1]]]; ric[v_, p_] := If[p == {}, AppendTo[L, v], Block[{w = v}, While[w <= upto, ric[w, Rest@ p]; w *= First@ p]]]; np = 1; L = {1}; While[(b = Times @@ Prime[Range@ np]) <= upto, ric[b, pL[np++]]]; Sort[L] (* Giovanni Resta, Jun 23 2020 *)
  • Python
    from sympy import factorint, primepi
    A317087_list = [1]
    for n in range(1,10**5):
        d = factorint(n)
        k, l = sorted(d.keys()), len(d)
        if l > 0 and l == primepi(max(d)):
            for i in range(l//2):
                if d[k[i]] != d[k[l-i-1]]:
                    break
            else:
                A317087_list.append(n) # Chai Wah Wu, Jun 23 2020