cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317098 Number of series-reduced rooted trees with n unlabeled leaves where the number of distinct branches under each node is <= 2.

Original entry on oeis.org

1, 1, 2, 5, 12, 31, 80, 214, 576, 1595, 4448, 12625, 36146, 104662, 305251, 897417, 2654072, 7895394, 23601441, 70871693, 213660535, 646484951, 1962507610, 5975425743, 18243789556, 55841543003, 171320324878, 526738779846, 1622739134873, 5008518981670
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2018

Keywords

Comments

There can be more than two branches as long as there are not three distinct branches.

Examples

			The a(5) = 12 trees:
  (o(o(o(oo))))
  (o(o(ooo)))
  (o((oo)(oo)))
  (o(oo(oo)))
  (o(oooo))
  ((oo)(o(oo)))
  ((oo)(ooo))
  (oo(o(oo)))
  (oo(ooo))
  (o(oo)(oo))
  (ooo(oo))
  (ooooo)
		

Crossrefs

Programs

  • Mathematica
    semisameQ[u_]:=Length[Union[u]]<=2;
    nms[n_]:=nms[n]=If[n==1,{{1}},Join@@Table[Select[Union[Sort/@Tuples[nms/@ptn]],semisameQ],{ptn,Rest[IntegerPartitions[n]]}]];
    Table[Length[nms[n]],{n,10}]
  • PARI
    seq(n)={my(v=vector(n)); v[1]=1; for(n=2, n, v[n]=sum(k=1, n-1, sumdiv(k, d, v[d])*sumdiv(n-k, d, v[d])/2) + sumdiv(n, d, v[n/d]*(1 - (d-1)/2)) ); v} \\ Andrew Howroyd, Aug 19 2018

Extensions

Terms a(21) and beyond from Andrew Howroyd, Aug 19 2018