A317102 Powerful numbers whose distinct prime multiplicities are pairwise indivisible.
1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 72, 81, 100, 108, 121, 125, 128, 169, 196, 200, 216, 225, 243, 256, 288, 289, 343, 361, 392, 432, 441, 484, 500, 512, 529, 625, 648, 675, 676, 729, 800, 841, 864, 900, 961, 968, 972, 1000, 1024, 1089, 1125, 1152, 1156, 1225
Offset: 1
Keywords
Examples
144 = 2^4 * 3^2 is not in the sequence because 4 and 2 are not pairwise indivisible.
Links
- Robert Israel, Table of n, a(n) for n = 1..3000
Crossrefs
Programs
-
Maple
filter:= proc(n) local L,i,j,q; L:= convert(map(t -> t[2],ifactors(n)[2]),set); if min(L) = 1 then return false fi; for j from 2 to nops(L) do for i from 1 to j-1 do q:= L[i]/L[j]; if q::integer or (1/q)::integer then return false fi; od od; true end proc: select(filter, [$4..10000]); # Robert Israel, Jun 23 2019
-
Mathematica
Select[Range[1000],And[Max@@Last/@FactorInteger[#]>=2,Select[Tuples[Last/@FactorInteger[#],2],And[UnsameQ@@#,Divisible@@#]&]=={}]&]
Extensions
Definition corrected and a(1)=1 inserted by Robert Israel, Jun 23 2019
Comments