cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A317707 Number of powerful rooted trees with n nodes.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 11, 13, 22, 29, 46, 57, 94, 115, 180, 230, 349, 435, 671, 830, 1245, 1572, 2320, 2894, 4287, 5328, 7773, 9752, 14066, 17547, 25328, 31515, 45010, 56289, 79805, 99467, 140778, 175215, 246278, 307273, 429421, 534774, 745776, 927776, 1287038
Offset: 1

Views

Author

Gus Wiseman, Aug 05 2018

Keywords

Comments

An unlabeled rooted tree is powerful if either it is a single node or a single node with a single powerful tree as a branch, or if the branches of the root all appear with multiplicities greater than 1 and are themselves powerful trees.

Examples

			The a(7) = 11 powerful rooted trees:
  ((((((o))))))
  (((((oo)))))
  ((((ooo))))
  ((((o)(o))))
  (((oooo)))
  ((ooooo))
  (((o))((o)))
  ((oo)(oo))
  ((o)(o)(o))
  (oo(o)(o))
  (oooooo)
		

Crossrefs

Programs

  • Maple
    h:= proc(n, k, t) option remember; `if`(k=0, binomial(n+t, t),
          `if`(n=0, 0, add(h(n-1, k-j, t+1), j=2..k)))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1)*h(a(i), j, 0), j=0..n/i)))
        end:
    a:= proc(n) option remember; `if`(n<2, n, b(n-1$2)+a(n-1)) end:
    seq(a(n), n=1..50);  # Alois P. Heinz, Aug 31 2018
  • Mathematica
    purt[n_]:=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[purt/@ptn]],Or[Length[#]==1,Min@@Length/@Split[#]>1]&],{ptn,IntegerPartitions[n-1]}]];
    Table[Length[purt[n]],{n,10}]
    (* Second program: *)
    h[n_, k_, t_] := h[n, k, t] = If[k == 0, Binomial[n + t, t], If[n == 0, 0, Sum[h[n - 1, k - j, t + 1], {j, 2, k}]]];
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]* h[a[i], j, 0], {j, 0, n/i}]]];
    a[n_] := a[n] = If[n < 2, n, b[n - 1, n - 1] + a[n - 1]];
    Array[a, 50] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)

Extensions

a(27)-a(45) from Alois P. Heinz, Aug 31 2018

A317705 Matula-Goebel numbers of series-reduced powerful rooted trees.

Original entry on oeis.org

1, 4, 8, 16, 32, 49, 64, 128, 196, 256, 343, 361, 392, 512, 784, 1024, 1372, 1444, 1568, 2048, 2401, 2744, 2809, 2888, 3136, 4096, 5488, 5776, 6272, 6859, 8192, 9604, 10976, 11236, 11552, 12544, 16384, 16807, 17161, 17689, 19208, 21952, 22472, 23104, 25088
Offset: 1

Views

Author

Gus Wiseman, Aug 04 2018

Keywords

Comments

A positive integer n is a Matula-Goebel number of a series-reduced powerful rooted tree iff either n = 1 or n is a powerful number (meaning its prime multiplicities are all greater than 1) whose prime indices are all Matula-Goebel numbers of series-reduced powerful rooted trees, where a prime index of n is a number m such that prime(m) divides n.

Examples

			The sequence of Matula-Goebel numbers of series-reduced powerful rooted trees together with the corresponding trees begins:
    1: o
    4: (oo)
    8: (ooo)
   16: (oooo)
   32: (ooooo)
   49: ((oo)(oo))
   64: (oooooo)
  128: (ooooooo)
  196: (oo(oo)(oo))
  256: (oooooooo)
  343: ((oo)(oo)(oo))
  361: ((ooo)(ooo))
  392: (ooo(oo)(oo))
  512: (ooooooooo)
  784: (oooo(oo)(oo))
		

Crossrefs

Programs

  • Mathematica
    powgoQ[n_]:=Or[n==1,And[Min@@FactorInteger[n][[All,2]]>1,And@@powgoQ/@PrimePi/@FactorInteger[n][[All,1]]]];
    Select[Range[1000],powgoQ] (* Gus Wiseman, Aug 31 2018 *)
    (* Second program: *)
    Nest[Function[a, Append[a, Block[{k = a[[-1]] + 1}, While[Nand[AllTrue[#[[All, -1]], # > 1 & ], AllTrue[PrimePi[#[[All, 1]] ], MemberQ[a, #] &]] &@ FactorInteger@ k, k++]; k]]], {1}, 44] (* Michael De Vlieger, Aug 05 2018 *)

Extensions

Rewritten by Gus Wiseman, Aug 31 2018

A318612 Matula-Goebel numbers of powerful rooted trees.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 16, 17, 19, 23, 25, 27, 31, 32, 36, 49, 53, 59, 64, 67, 72, 81, 83, 97, 100, 103, 108, 121, 125, 127, 128, 131, 144, 151, 196, 200, 216, 225, 227, 241, 243, 256, 277, 288, 289, 311, 324, 331, 343, 359, 361, 392, 400, 419, 431, 432
Offset: 1

Views

Author

Gus Wiseman, Aug 30 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. A positive integer n is a Matula-Goebel number of a powerful rooted tree iff either n = 1 or n is a prime number whose prime index is a Matula-Goebel number of a powerful rooted tree or n is a powerful number (meaning its prime multiplicities are all greater than 1) whose prime indices are all Matula-Goebel numbers of powerful rooted trees.

Examples

			The sequence of all powerful rooted trees together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   3: ((o))
   4: (oo)
   5: (((o)))
   7: ((oo))
   8: (ooo)
   9: ((o)(o))
  11: ((((o))))
  16: (oooo)
  17: (((oo)))
  19: ((ooo))
  23: (((o)(o)))
  25: (((o))((o)))
  27: ((o)(o)(o))
  31: (((((o)))))
		

Crossrefs

Programs

  • Mathematica
    powgoQ[n_]:=Or[n==1,If[PrimeQ[n],powgoQ[PrimePi[n]],And[Min@@FactorInteger[n][[All,2]]>1,And@@powgoQ/@PrimePi/@FactorInteger[n][[All,1]]]]];
    Select[Range[1000],powgoQ]

A317616 Numbers whose prime multiplicities are not pairwise indivisible.

Original entry on oeis.org

12, 18, 20, 24, 28, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 68, 75, 76, 80, 84, 88, 90, 92, 96, 98, 99, 104, 112, 116, 117, 120, 124, 126, 132, 135, 136, 140, 144, 147, 148, 150, 152, 153, 156, 160, 162, 164, 168, 171, 172, 175, 176, 180, 184, 188, 189, 192
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2018

Keywords

Comments

The numbers of terms that do not exceed 10^k, for k = 2, 3, ..., are 26, 344, 3762, 38711, 390527, 3915874, 39192197, 392025578, 3920580540, ... . Apparently, the asymptotic density of this sequence exists and equals 0.392... . - Amiram Eldar, Sep 25 2024

Examples

			72 = 2^3 * 3^2 is not in the sequence because 3 and 2 are pairwise indivisible.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],!Select[Tuples[Last/@FactorInteger[#],2],And[UnsameQ@@#,Divisible@@#]&]=={}&]
  • PARI
    is(k) = if(k == 1, 0, my(e = Set(factor(k)[,2])); if(vecmax(e) == 1, 0, for(i = 1, #e, for(j = 1, i-1, if(!(e[i] % e[j]), return(1)))); 0)); \\ Amiram Eldar, Sep 25 2024

A318611 Number of series-reduced powerful rooted trees with n nodes.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 1, 3, 3, 4, 4, 8, 5, 11, 10, 14, 14, 24, 18, 34, 32, 46, 45, 72, 60, 103, 96, 138, 137, 212, 184, 296, 282, 403, 397, 591, 539, 830, 798, 1125, 1119, 1624, 1519, 2253, 2195, 3067, 3056, 4341, 4158, 6004, 5897, 8145, 8164, 11397, 11090
Offset: 1

Views

Author

Gus Wiseman, Aug 30 2018

Keywords

Comments

A series-reduced rooted tree is powerful if either it is a single node, or the branches of the root all appear with multiplicities greater than 1 and are themselves series-reduced powerful rooted trees.

Examples

			The a(13) = 8 series-reduced powerful rooted trees:
  ((oo)(oo)(oo)(oo))
  ((ooo)(ooo)(ooo))
  (ooo(oo)(oo)(oo))
  ((ooooo)(ooooo))
  (oo(oooo)(oooo))
  (oooo(ooo)(ooo))
  (oooooo(oo)(oo))
  (oooooooooooo)
		

Crossrefs

Programs

  • Maple
    h:= proc(n, k, t) option remember; `if`(k=0, binomial(n+t, t),
          `if`(n=0, 0, add(h(n-1, k-j, t+1), j=2..k)))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1)*h(a(i), j, 0), j=0..n/i)))
        end:
    a:= n-> `if`(n<2, n, b(n-1$2)):
    seq(a(n), n=1..60);  # Alois P. Heinz, Aug 31 2018
  • Mathematica
    purt[n_]:=purt[n]=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[purt/@ptn]],Min@@Length/@Split[#]>1&],{ptn,IntegerPartitions[n-1]}]];
    Table[Length[purt[n]],{n,20}]
    (* Second program: *)
    h[n_, k_, t_] := h[n, k, t] = If[k == 0, Binomial[n + t, t],
         If[n == 0, 0, Sum[h[n - 1, k - j, t + 1], {j, 2, k}]]];
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0,
         Sum[b[n - i*j, i - 1]*h[a[i], j, 0], {j, 0, n/i}]]];
    a[n_] := If[n < 2, n, b[n - 1, n - 1]];
    Array[a, 60] (* Jean-François Alcover, May 19 2021, after Alois P. Heinz *)

Extensions

a(41)-a(56) from Alois P. Heinz, Aug 31 2018

A317719 Numbers that are not powerful tree numbers.

Original entry on oeis.org

6, 10, 12, 13, 14, 15, 18, 20, 21, 22, 24, 26, 28, 29, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 82, 84, 85, 86, 87, 88, 89, 90, 91
Offset: 1

Views

Author

Gus Wiseman, Aug 05 2018

Keywords

Comments

A positive integer n is a powerful tree number iff either n = 1 or n is a prime number whose prime index is a powerful tree number, or n is a powerful number (meaning its prime multiplicities are all greater than 1) whose prime indices are all powerful tree numbers. A prime index of n is a number m such that prime(m) divides n.

Examples

			The sequence of numbers that are not powerful tree numbers together with their Matula-Goebel trees begins:
   6: (o(o))
  10: (o((o)))
  12: (oo(o))
  13: ((o(o)))
  14: (o(oo))
  15: ((o)((o)))
  18: (o(o)(o))
  20: (oo((o)))
  21: ((o)(oo))
  22: (o(((o))))
  24: (ooo(o))
  26: (o(o(o)))
  28: (oo(oo))
  29: ((o((o))))
  30: (o(o)((o)))
		

Crossrefs

Programs

  • Mathematica
    powgoQ[n_]:=Or[n==1,If[PrimeQ[n],powgoQ[PrimePi[n]],And[Min@@FactorInteger[n][[All,2]]>1,And@@powgoQ/@PrimePi/@FactorInteger[n][[All,1]]]]];
    Select[Range[100],!powgoQ[#]&]

A317101 Numbers whose prime multiplicities are pairwise indivisible.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 77, 78, 79, 81, 82, 83, 85, 86, 87
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2018

Keywords

Examples

			72 = 2^3 * 3^2 is in the sequence because 3 and 2 are pairwise indivisible.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Select[Tuples[Last/@FactorInteger[#],2],And[UnsameQ@@#,Divisible@@#]&]=={}&]
Showing 1-7 of 7 results.