cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A317712 Number of uniform rooted trees with n nodes.

Original entry on oeis.org

1, 1, 2, 4, 8, 15, 35, 72, 169, 388, 934, 2234, 5508, 13557, 33883, 85017, 215091, 546496, 1396524, 3582383, 9228470, 23852918, 61857180, 160871716, 419516462, 1096671326, 2873403980, 7544428973, 19847520789, 52308750878, 138095728065, 365153263313, 966978876376
Offset: 1

Views

Author

Gus Wiseman, Aug 05 2018

Keywords

Comments

An unlabeled rooted tree is uniform if the multiplicities of the branches directly under any given node are all equal.

Examples

			The a(5) = 8 uniform rooted trees:
  ((((o))))
  (((oo)))
  ((o(o)))
  ((ooo))
  (o((o)))
  (o(oo))
  ((o)(o))
  (oooo)
		

Crossrefs

Programs

  • Mathematica
    purt[n_]:=Join@@Table[Select[Union[Sort/@Tuples[purt/@ptn]],SameQ@@Length/@Split[#]&],{ptn,IntegerPartitions[n-1]}];
    Table[Length[purt[n]],{n,10}]
  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
    seq(n)={my(v=[1]); for(n=2, n, my(t=WeighT(v)); v=concat(v, sumdiv(n-1, d, t[d]))); v} \\ Andrew Howroyd, Aug 28 2018

Formula

a(n) ~ c * d^n / n^(3/2), where d = 2.774067238136373782458114960391469140405537808253... and c = 0.43338208953061974806801546569720246018271214... - Vaclav Kotesovec, Sep 07 2019

Extensions

Term a(21) and beyond from Andrew Howroyd, Aug 28 2018

A317710 Uniform tree numbers. Matula-Goebel numbers of uniform rooted trees.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 42, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 62, 64, 65, 66, 67, 69, 70, 73, 77, 78, 79, 81, 82, 83, 85, 86, 87, 91, 93, 94, 95, 97
Offset: 1

Views

Author

Gus Wiseman, Aug 05 2018

Keywords

Comments

A positive integer n is a uniform tree number iff either n = 1 or n is a power of a squarefree number whose prime indices are also uniform tree numbers. A prime index of n is a number m such that prime(m) divides n.

Crossrefs

Programs

  • Mathematica
    rupQ[n_]:=Or[n==1,And[SameQ@@FactorInteger[n][[All,2]],And@@rupQ/@PrimePi/@FactorInteger[n][[All,1]]]];
    Select[Range[100],rupQ]

A317705 Matula-Goebel numbers of series-reduced powerful rooted trees.

Original entry on oeis.org

1, 4, 8, 16, 32, 49, 64, 128, 196, 256, 343, 361, 392, 512, 784, 1024, 1372, 1444, 1568, 2048, 2401, 2744, 2809, 2888, 3136, 4096, 5488, 5776, 6272, 6859, 8192, 9604, 10976, 11236, 11552, 12544, 16384, 16807, 17161, 17689, 19208, 21952, 22472, 23104, 25088
Offset: 1

Views

Author

Gus Wiseman, Aug 04 2018

Keywords

Comments

A positive integer n is a Matula-Goebel number of a series-reduced powerful rooted tree iff either n = 1 or n is a powerful number (meaning its prime multiplicities are all greater than 1) whose prime indices are all Matula-Goebel numbers of series-reduced powerful rooted trees, where a prime index of n is a number m such that prime(m) divides n.

Examples

			The sequence of Matula-Goebel numbers of series-reduced powerful rooted trees together with the corresponding trees begins:
    1: o
    4: (oo)
    8: (ooo)
   16: (oooo)
   32: (ooooo)
   49: ((oo)(oo))
   64: (oooooo)
  128: (ooooooo)
  196: (oo(oo)(oo))
  256: (oooooooo)
  343: ((oo)(oo)(oo))
  361: ((ooo)(ooo))
  392: (ooo(oo)(oo))
  512: (ooooooooo)
  784: (oooo(oo)(oo))
		

Crossrefs

Programs

  • Mathematica
    powgoQ[n_]:=Or[n==1,And[Min@@FactorInteger[n][[All,2]]>1,And@@powgoQ/@PrimePi/@FactorInteger[n][[All,1]]]];
    Select[Range[1000],powgoQ] (* Gus Wiseman, Aug 31 2018 *)
    (* Second program: *)
    Nest[Function[a, Append[a, Block[{k = a[[-1]] + 1}, While[Nand[AllTrue[#[[All, -1]], # > 1 & ], AllTrue[PrimePi[#[[All, 1]] ], MemberQ[a, #] &]] &@ FactorInteger@ k, k++]; k]]], {1}, 44] (* Michael De Vlieger, Aug 05 2018 *)

Extensions

Rewritten by Gus Wiseman, Aug 31 2018

A317708 Number of aperiodic relatively prime trees with n nodes.

Original entry on oeis.org

1, 1, 1, 2, 4, 10, 20, 48, 108, 255, 595, 1435, 3434, 8372, 20419, 50289, 124289, 309122, 771508, 1934462
Offset: 1

Views

Author

Gus Wiseman, Aug 05 2018

Keywords

Comments

An unlabeled rooted tree is aperiodic and relatively prime iff either it is a single node or a single node with a single aperiodic relatively prime branch, or the branches directly under any given node have empty intersection (relatively prime) and also have relatively prime multiplicities (aperiodic) and are themselves aperiodic relatively prime trees.

Examples

			The a(6) = 10 aperiodic relatively prime trees:
  (((((o)))))
  (((o(o))))
  ((o((o))))
  ((oo(o)))
  (o(((o))))
  (o(o(o)))
  ((o)((o)))
  (oo((o)))
  (o(o)(o))
  (ooo(o))
		

Crossrefs

Programs

  • Mathematica
    rurt[n_]:=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[rurt/@ptn]],Or[Length[#]==1,And[Intersection@@#=={},GCD@@Length/@Split[#]==1]]&],{ptn,IntegerPartitions[n-1]}]];
    Table[Length[rurt[n]],{n,10}]

A317718 Number of uniform relatively prime rooted trees with n nodes.

Original entry on oeis.org

1, 1, 2, 4, 7, 13, 27, 55, 125, 278, 650, 1510, 3624, 8655, 21017, 51212, 125857, 310581, 770767, 1920226
Offset: 1

Views

Author

Gus Wiseman, Aug 05 2018

Keywords

Comments

An unlabeled rooted tree is uniform and relatively prime iff either it is a single node or a single node with a single uniform relatively prime branch, or the branches of the root have empty intersection (relatively prime) and equal multiplicities (uniform) and are themselves uniform relatively prime trees.

Examples

			The a(6) = 13 uniform relatively prime rooted trees:
  (((((o)))))
  ((((oo))))
  (((o(o))))
  (((ooo)))
  ((o((o))))
  ((o(oo)))
  ((oooo))
  (o(((o))))
  (o((oo)))
  (o(o(o)))
  (o(ooo))
  ((o)((o)))
  (ooooo)
		

Crossrefs

Programs

  • Mathematica
    purt[n_]:=purt[n]=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[purt/@ptn]],Or[Length[#]==1,And[SameQ@@Length/@Split[#],Intersection@@#=={}]]&],{ptn,IntegerPartitions[n-1]}]];
    Table[Length[purt[n]],{n,20}]

A317709 Aperiodic relatively prime tree numbers. Matula-Goebel numbers of aperiodic relatively prime trees.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 11, 12, 13, 15, 18, 20, 22, 24, 26, 29, 30, 31, 33, 37, 40, 41, 44, 45, 47, 48, 50, 52, 54, 55, 58, 60, 61, 62, 66, 71, 72, 74, 75, 78, 79, 80, 82, 88, 89, 90, 93, 94, 96, 99, 101, 104, 108, 109, 110, 113, 116, 120, 122, 123, 124, 127, 130
Offset: 1

Views

Author

Gus Wiseman, Aug 05 2018

Keywords

Comments

A positive integer n is in the sequence iff either n = 1 or n is a prime number whose prime index already belongs to the sequence or n is not a perfect power and its prime indices are relatively prime numbers already belonging to the sequence. A prime index of n is a number m such that prime(m) divides n.

Examples

			The sequence of aperiodic relatively prime tree numbers together with their Matula-Goebel trees begins:
   1: o
   2: (o)
   3: ((o))
   5: (((o)))
   6: (o(o))
  10: (o((o)))
  11: ((((o))))
  12: (oo(o))
  13: ((o(o)))
  15: ((o)((o)))
  18: (o(o)(o))
  20: (oo((o)))
  22: (o(((o))))
  24: (ooo(o))
  26: (o(o(o)))
  29: ((o((o))))
  30: (o(o)((o)))
  31: (((((o)))))
		

Crossrefs

Programs

  • Mathematica
    rupQ[n_]:=Or[n==1,If[PrimeQ[n],rupQ[PrimePi[n]],And[GCD@@FactorInteger[n][[All,2]]==1,GCD@@PrimePi/@FactorInteger[n][[All,1]]==1,And@@rupQ/@PrimePi/@FactorInteger[n][[All,1]]]]];
    Select[Range[100],rupQ]

A317717 Uniform relatively prime tree numbers. Matula-Goebel numbers of uniform relatively prime rooted trees.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19, 22, 26, 29, 30, 31, 32, 33, 34, 35, 36, 38, 41, 42, 43, 47, 51, 53, 55, 58, 59, 62, 64, 66, 67, 70, 77, 78, 79, 82, 85, 86, 93, 94, 95, 100, 101, 102, 105, 106, 109, 110, 113, 114, 118, 119, 123, 127, 128
Offset: 1

Views

Author

Gus Wiseman, Aug 05 2018

Keywords

Comments

A positive integer n is a uniform relatively prime tree number iff either n = 1 or n is a prime number whose prime index is a uniform relatively prime tree number, or n is a power of a squarefree number whose prime indices are relatively prime and are themselves uniform relatively prime tree numbers. A prime index of n is a number m such that prime(m) divides n.

Crossrefs

Programs

  • Mathematica
    rupQ[n_]:=Or[n==1,If[PrimeQ[n],rupQ[PrimePi[n]],And[SameQ@@FactorInteger[n][[All,2]],GCD@@PrimePi/@FactorInteger[n][[All,1]]==1,And@@rupQ/@PrimePi/@FactorInteger[n][[All,1]]]]];
    Select[Range[200],rupQ]

A317711 Numbers that are not uniform tree numbers.

Original entry on oeis.org

12, 18, 20, 24, 28, 37, 40, 44, 45, 48, 50, 52, 54, 56, 60, 61, 63, 68, 71, 72, 74, 75, 76, 80, 84, 88, 89, 90, 92, 96, 98, 99, 104, 107, 108, 111, 112, 116, 117, 120, 122, 124, 126, 132, 135, 136, 140, 142, 144, 147, 148, 150, 152, 153, 156, 157, 160, 162
Offset: 1

Views

Author

Gus Wiseman, Aug 05 2018

Keywords

Comments

A positive integer n is a uniform tree number iff either n = 1 or n is a power of a squarefree number whose prime indices are also uniform tree numbers. A prime index of n is a number m such that prime(m) divides n.

Examples

			The sequence of non-uniform tree numbers together with their Matula-Goebel trees begins:
  12: (oo(o))
  18: (o(o)(o))
  20: (oo((o)))
  24: (ooo(o))
  28: (oo(oo))
  37: ((oo(o)))
  40: (ooo((o)))
  44: (oo(((o))))
  45: ((o)(o)((o)))
  48: (oooo(o))
  50: (o((o))((o)))
  52: (oo(o(o)))
  54: (o(o)(o)(o))
  56: (ooo(oo))
  60: (oo(o)((o)))
		

Crossrefs

Programs

  • Mathematica
    rupQ[n_]:=Or[n==1,And[SameQ@@FactorInteger[n][[All,2]],And@@rupQ/@PrimePi/@FactorInteger[n][[All,1]]]];
    Select[Range[100],!rupQ[#]&]

A318612 Matula-Goebel numbers of powerful rooted trees.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 16, 17, 19, 23, 25, 27, 31, 32, 36, 49, 53, 59, 64, 67, 72, 81, 83, 97, 100, 103, 108, 121, 125, 127, 128, 131, 144, 151, 196, 200, 216, 225, 227, 241, 243, 256, 277, 288, 289, 311, 324, 331, 343, 359, 361, 392, 400, 419, 431, 432
Offset: 1

Views

Author

Gus Wiseman, Aug 30 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. A positive integer n is a Matula-Goebel number of a powerful rooted tree iff either n = 1 or n is a prime number whose prime index is a Matula-Goebel number of a powerful rooted tree or n is a powerful number (meaning its prime multiplicities are all greater than 1) whose prime indices are all Matula-Goebel numbers of powerful rooted trees.

Examples

			The sequence of all powerful rooted trees together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   3: ((o))
   4: (oo)
   5: (((o)))
   7: ((oo))
   8: (ooo)
   9: ((o)(o))
  11: ((((o))))
  16: (oooo)
  17: (((oo)))
  19: ((ooo))
  23: (((o)(o)))
  25: (((o))((o)))
  27: ((o)(o)(o))
  31: (((((o)))))
		

Crossrefs

Programs

  • Mathematica
    powgoQ[n_]:=Or[n==1,If[PrimeQ[n],powgoQ[PrimePi[n]],And[Min@@FactorInteger[n][[All,2]]>1,And@@powgoQ/@PrimePi/@FactorInteger[n][[All,1]]]]];
    Select[Range[1000],powgoQ]

A318611 Number of series-reduced powerful rooted trees with n nodes.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 1, 3, 3, 4, 4, 8, 5, 11, 10, 14, 14, 24, 18, 34, 32, 46, 45, 72, 60, 103, 96, 138, 137, 212, 184, 296, 282, 403, 397, 591, 539, 830, 798, 1125, 1119, 1624, 1519, 2253, 2195, 3067, 3056, 4341, 4158, 6004, 5897, 8145, 8164, 11397, 11090
Offset: 1

Views

Author

Gus Wiseman, Aug 30 2018

Keywords

Comments

A series-reduced rooted tree is powerful if either it is a single node, or the branches of the root all appear with multiplicities greater than 1 and are themselves series-reduced powerful rooted trees.

Examples

			The a(13) = 8 series-reduced powerful rooted trees:
  ((oo)(oo)(oo)(oo))
  ((ooo)(ooo)(ooo))
  (ooo(oo)(oo)(oo))
  ((ooooo)(ooooo))
  (oo(oooo)(oooo))
  (oooo(ooo)(ooo))
  (oooooo(oo)(oo))
  (oooooooooooo)
		

Crossrefs

Programs

  • Maple
    h:= proc(n, k, t) option remember; `if`(k=0, binomial(n+t, t),
          `if`(n=0, 0, add(h(n-1, k-j, t+1), j=2..k)))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1)*h(a(i), j, 0), j=0..n/i)))
        end:
    a:= n-> `if`(n<2, n, b(n-1$2)):
    seq(a(n), n=1..60);  # Alois P. Heinz, Aug 31 2018
  • Mathematica
    purt[n_]:=purt[n]=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[purt/@ptn]],Min@@Length/@Split[#]>1&],{ptn,IntegerPartitions[n-1]}]];
    Table[Length[purt[n]],{n,20}]
    (* Second program: *)
    h[n_, k_, t_] := h[n, k, t] = If[k == 0, Binomial[n + t, t],
         If[n == 0, 0, Sum[h[n - 1, k - j, t + 1], {j, 2, k}]]];
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0,
         Sum[b[n - i*j, i - 1]*h[a[i], j, 0], {j, 0, n/i}]]];
    a[n_] := If[n < 2, n, b[n - 1, n - 1]];
    Array[a, 60] (* Jean-François Alcover, May 19 2021, after Alois P. Heinz *)

Extensions

a(41)-a(56) from Alois P. Heinz, Aug 31 2018
Showing 1-10 of 16 results. Next