cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A040039 First differences of A033485; also A033485 with terms repeated.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 5, 5, 7, 7, 10, 10, 13, 13, 18, 18, 23, 23, 30, 30, 37, 37, 47, 47, 57, 57, 70, 70, 83, 83, 101, 101, 119, 119, 142, 142, 165, 165, 195, 195, 225, 225, 262, 262, 299, 299, 346, 346, 393, 393, 450, 450, 507, 507, 577, 577, 647, 647, 730, 730, 813, 813, 914, 914, 1015, 1015, 1134, 1134, 1253, 1253, 1395, 1395
Offset: 0

Views

Author

Keywords

Comments

Apparently a(n) = number of partitions (p_1, p_2, ..., p_k) of n+1, with p_1 >= p_2 >= ... >= p_k, such that for each i, p_i > p_{i+1}+...+p_k. - John McKay (mac(AT)mathstat.concordia.ca), Mar 06 2009
Comment from John McKay confirmed in paper by Bessenrodt, Olsson, and Sellers. Such partitions are called "strongly decreasing" partitions in the paper, see the function s(n) therein.
Also the number of unlabeled binary rooted trees with 2*n + 3 nodes in which the two branches directly under any given non-leaf node are either equal or at least one of them is a leaf. - Gus Wiseman, Oct 08 2018
From Gus Wiseman, Apr 06 2021: (Start)
This sequence counts both of the following essentially equivalent things:
1. Sets of distinct positive integers with maximum n + 1 in which all adjacent elements have quotients < 1/2. For example, the a(0) = 1 through a(8) = 7 subsets are:
{1} {2} {3} {4} {5} {6} {7} {8} {9}
{1,3} {1,4} {1,5} {1,6} {1,7} {1,8} {1,9}
{2,5} {2,6} {2,7} {2,8} {2,9}
{3,7} {3,8} {3,9}
{1,3,7} {1,3,8} {4,9}
{1,3,9}
{1,4,9}
2. Sets of distinct positive integers with maximum n + 1 whose first differences are term-wise greater than their decapitation (remove the maximum). For example, the set q = {1,4,9} has first differences (3,5), which are greater than (1,4), so q is counted under a(8). On the other hand, r = {1,5,9} has first differences (4,4), which are not greater than (1,5), so r is not counted under a(8).
Also the number of partitions of n + 1 into powers of 2 covering an initial interval of powers of 2. For example, the a(0) = 1 through a(8) = 7 partitions are:
1 11 21 211 221 2211 421 4211 4221
111 1111 2111 21111 2221 22211 22221
11111 111111 22111 221111 42111
211111 2111111 222111
1111111 11111111 2211111
21111111
111111111
(End)

Examples

			From _Joerg Arndt_, Dec 17 2012: (Start)
The a(19-1)=30 strongly decreasing partitions of 19 are (in lexicographic order)
[ 1]    [ 10 5 3 1 ]
[ 2]    [ 10 5 4 ]
[ 3]    [ 10 6 2 1 ]
[ 4]    [ 10 6 3 ]
[ 5]    [ 10 7 2 ]
[ 6]    [ 10 8 1 ]
[ 7]    [ 10 9 ]
[ 8]    [ 11 5 2 1 ]
[ 9]    [ 11 5 3 ]
[10]    [ 11 6 2 ]
[11]    [ 11 7 1 ]
[12]    [ 11 8 ]
[13]    [ 12 4 2 1 ]
[14]    [ 12 4 3 ]
[15]    [ 12 5 2 ]
[16]    [ 12 6 1 ]
[17]    [ 12 7 ]
[18]    [ 13 4 2 ]
[19]    [ 13 5 1 ]
[20]    [ 13 6 ]
[21]    [ 14 3 2 ]
[22]    [ 14 4 1 ]
[23]    [ 14 5 ]
[24]    [ 15 3 1 ]
[25]    [ 15 4 ]
[26]    [ 16 2 1 ]
[27]    [ 16 3 ]
[28]    [ 17 2 ]
[29]    [ 18 1 ]
[30]    [ 19 ]
The a(20-1)=30 strongly decreasing partitions of 20 are obtained by adding 1 to the first part in each partition in the list.
(End)
From _Gus Wiseman_, Oct 08 2018: (Start)
The a(-1) = 1 through a(4) = 3 semichiral binary rooted trees:
  o  (oo)  (o(oo))  ((oo)(oo))  (o((oo)(oo)))  ((o(oo))(o(oo)))
                    (o(o(oo)))  (o(o(o(oo))))  (o(o((oo)(oo))))
                                               (o(o(o(o(oo)))))
(End)
		

Crossrefs

Cf. A000123.
The equal case is A001511.
The reflected version is A045690.
The unequal (anti-run) version is A045691.
A000929 counts partitions with all adjacent parts x >= 2y.
A002843 counts compositions with all adjacent parts x <= 2y.
A018819 counts partitions into powers of 2.
A154402 counts partitions with all adjacent parts x = 2y.
A274199 counts compositions with all adjacent parts x < 2y.
A342094 counts partitions with all adjacent parts x <= 2y (strict: A342095).
A342096 counts partitions without adjacent x >= 2y (strict: A342097).
A342098 counts partitions with all adjacent parts x > 2y.
A342337 counts partitions with all adjacent parts x = y or x = 2y.

Programs

  • Maple
    # For example, the five partitions of 4, written in nonincreasing order, are
    # [1,1,1,1], [2,1,1], [2,2], [3,1], [4].
    # Only the last two satisfy the condition, and a(3)=2.
    # The Maple program below verifies this for small values of n.
    with(combinat); N:=8; a:=array(1..N); c:=array(1..N);
    for n from 1 to N do p:=partition(n); np:=nops(p); t:=0;
    for s to np do r:=p[s]; r:=sort(r,`>`); nr:=nops(r); j:=1;
    while jsum(r[k],k=j+1..nr) do j:=j+1;od; # gives A040039
    #while j= sum(r[k],k=j+1..nr) do j:=j+1;od; # gives A018819
    if j=nr then t:=t+1;fi od; a[n]:=t; od;
    # John McKay
  • Mathematica
    T[n_, m_] := T[n, m] = Sum[Binomial[n-2k-1, n-2k-m] Sum[Binomial[m, i] T[k, i], {i, 1, k}], {k, 0, (n-m)/2}] + Binomial[n-1, n-m];
    a[n_] := T[n+1, 1];
    Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Jul 27 2018, after Vladimir Kruchinin *)
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&And@@Table[#[[i-1]]/#[[i]]<1/2,{i,2,Length[#]}]&]],{n,15}] (* Gus Wiseman, Apr 06 2021 *)
  • Maxima
    T(n,m):=sum(binomial(n-2*k-1,n-2*k-m)*sum(binomial(m,i)*T(k,i),i,1,k),k,0,(n-m)/2)+binomial(n-1,n-m);
    makelist(T(n+1,1),n,0,40); /* Vladimir Kruchinin, Mar 19 2015 */
    
  • PARI
    /* compute as "A033485 with terms repeated" */
    b(n) = if(n<2, 1, b(floor(n/2))+b(n-1));  /* A033485 */
    a(n) = b(n\2+1); /* note different offsets */
    for(n=0,99, print1(a(n),", ")); /* Joerg Arndt, Jan 21 2011 */
    
  • Python
    from itertools import islice
    from collections import deque
    def A040039_gen(): # generator of terms
        aqueue, f, b, a = deque([2]), True, 1, 2
        yield from (1, 1, 2, 2)
        while True:
            a += b
            yield from (a, a)
            aqueue.append(a)
            if f: b = aqueue.popleft()
            f = not f
    A040039_list = list(islice(A040039_gen(),40)) # Chai Wah Wu, Jun 07 2022

Formula

Let T(x) be the g.f, then T(x) = 1 + x/(1-x)*T(x^2) = 1 + x/(1-x) * ( 1 + x^2/(1-x^2) * ( 1 + x^4/(1-x^4) * ( 1 + x^8/(1-x^8) *(...) ))). [Joerg Arndt, May 11 2010]
From Joerg Arndt, Oct 02 2013: (Start)
G.f.: sum(k>=1, x^(2^k-1) / prod(j=0..k-1, 1-x^(2^k) ) ) [Bessenrodt/Olsson/Sellers].
G.f.: 1/(2*x^2) * ( 1/prod(k>=0, 1 - x^(2^k) ) - (1 + x) ).
a(n) = 1/2 * A018819(n+2).
(End)
a(n) = T(n+1,1), where T(n,m)=sum(k..0,(n-m)/2, binomial(n-2*k-1,n-2*k-m)*sum(i=1..k, binomial(m,i)*T(k,i)))+binomial(n-1,n-m). - Vladimir Kruchinin, Mar 19 2015
Using offset 1: a(1) = 1; a(n even) = a(n-1); a(n odd) = a(n-1) + a((n-1)/2). - Gus Wiseman, Oct 08 2018

A306200 Number of unlabeled rooted semi-identity trees with n nodes.

Original entry on oeis.org

0, 1, 1, 2, 4, 8, 18, 41, 98, 237, 591, 1488, 3805, 9820, 25593, 67184, 177604, 472177, 1261998, 3388434, 9136019, 24724904, 67141940, 182892368, 499608724, 1368340326, 3756651116, 10336434585, 28499309291, 78727891420, 217870037932, 603934911859, 1676720329410
Offset: 0

Views

Author

Gus Wiseman, Jan 29 2019

Keywords

Comments

A rooted tree is a semi-identity tree if the non-leaf branches of the root are all distinct and are themselves semi-identity trees.

Examples

			The a(1) = 1 through a(7) = 8 trees:
  o  (o)  (oo)   (ooo)    (oooo)     (ooooo)
          ((o))  ((oo))   ((ooo))    ((oooo))
                 (o(o))   (o(oo))    (o(ooo))
                 (((o)))  (oo(o))    (oo(oo))
                          (((oo)))   (ooo(o))
                          ((o(o)))   (((ooo)))
                          (o((o)))   ((o)(oo))
                          ((((o))))  ((o(oo)))
                                     ((oo(o)))
                                     (o((oo)))
                                     (o(o(o)))
                                     (oo((o)))
                                     ((((oo))))
                                     (((o(o))))
                                     ((o)((o)))
                                     ((o((o))))
                                     (o(((o))))
                                     (((((o)))))
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          add(b(n-i*j, i-1)*binomial(a(i), j), j=0..n/i))
        end:
    a:= n-> `if`(n=0, 0, b(n-1$2)):
    seq(a(n), n=0..35);  # Alois P. Heinz, Jan 29 2019
  • Mathematica
    ursit[n_]:=Join@@Table[Select[Union[Sort/@Tuples[ursit/@ptn]],UnsameQ@@DeleteCases[#,{}]&],{ptn,IntegerPartitions[n-1]}];
    Table[Length[ursit[n]],{n,10}]
    (* Second program: *)
    b[n_, i_] := b[n, i] = If[n == 0 || i == 1, 1,
         Sum[b[n - i*j, i - 1]*Binomial[a[i], j], {j, 0, n/i}]];
    a[n_] := If[n == 0, 0, b[n - 1, n - 1]];
    a /@ Range[0, 35] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)

Extensions

More terms from Alois P. Heinz, Jan 29 2019

A317710 Uniform tree numbers. Matula-Goebel numbers of uniform rooted trees.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 42, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 62, 64, 65, 66, 67, 69, 70, 73, 77, 78, 79, 81, 82, 83, 85, 86, 87, 91, 93, 94, 95, 97
Offset: 1

Views

Author

Gus Wiseman, Aug 05 2018

Keywords

Comments

A positive integer n is a uniform tree number iff either n = 1 or n is a power of a squarefree number whose prime indices are also uniform tree numbers. A prime index of n is a number m such that prime(m) divides n.

Crossrefs

Programs

  • Mathematica
    rupQ[n_]:=Or[n==1,And[SameQ@@FactorInteger[n][[All,2]],And@@rupQ/@PrimePi/@FactorInteger[n][[All,1]]]];
    Select[Range[100],rupQ]

A317707 Number of powerful rooted trees with n nodes.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 11, 13, 22, 29, 46, 57, 94, 115, 180, 230, 349, 435, 671, 830, 1245, 1572, 2320, 2894, 4287, 5328, 7773, 9752, 14066, 17547, 25328, 31515, 45010, 56289, 79805, 99467, 140778, 175215, 246278, 307273, 429421, 534774, 745776, 927776, 1287038
Offset: 1

Views

Author

Gus Wiseman, Aug 05 2018

Keywords

Comments

An unlabeled rooted tree is powerful if either it is a single node or a single node with a single powerful tree as a branch, or if the branches of the root all appear with multiplicities greater than 1 and are themselves powerful trees.

Examples

			The a(7) = 11 powerful rooted trees:
  ((((((o))))))
  (((((oo)))))
  ((((ooo))))
  ((((o)(o))))
  (((oooo)))
  ((ooooo))
  (((o))((o)))
  ((oo)(oo))
  ((o)(o)(o))
  (oo(o)(o))
  (oooooo)
		

Crossrefs

Programs

  • Maple
    h:= proc(n, k, t) option remember; `if`(k=0, binomial(n+t, t),
          `if`(n=0, 0, add(h(n-1, k-j, t+1), j=2..k)))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1)*h(a(i), j, 0), j=0..n/i)))
        end:
    a:= proc(n) option remember; `if`(n<2, n, b(n-1$2)+a(n-1)) end:
    seq(a(n), n=1..50);  # Alois P. Heinz, Aug 31 2018
  • Mathematica
    purt[n_]:=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[purt/@ptn]],Or[Length[#]==1,Min@@Length/@Split[#]>1]&],{ptn,IntegerPartitions[n-1]}]];
    Table[Length[purt[n]],{n,10}]
    (* Second program: *)
    h[n_, k_, t_] := h[n, k, t] = If[k == 0, Binomial[n + t, t], If[n == 0, 0, Sum[h[n - 1, k - j, t + 1], {j, 2, k}]]];
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]* h[a[i], j, 0], {j, 0, n/i}]]];
    a[n_] := a[n] = If[n < 2, n, b[n - 1, n - 1] + a[n - 1]];
    Array[a, 50] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)

Extensions

a(27)-a(45) from Alois P. Heinz, Aug 31 2018

A317705 Matula-Goebel numbers of series-reduced powerful rooted trees.

Original entry on oeis.org

1, 4, 8, 16, 32, 49, 64, 128, 196, 256, 343, 361, 392, 512, 784, 1024, 1372, 1444, 1568, 2048, 2401, 2744, 2809, 2888, 3136, 4096, 5488, 5776, 6272, 6859, 8192, 9604, 10976, 11236, 11552, 12544, 16384, 16807, 17161, 17689, 19208, 21952, 22472, 23104, 25088
Offset: 1

Views

Author

Gus Wiseman, Aug 04 2018

Keywords

Comments

A positive integer n is a Matula-Goebel number of a series-reduced powerful rooted tree iff either n = 1 or n is a powerful number (meaning its prime multiplicities are all greater than 1) whose prime indices are all Matula-Goebel numbers of series-reduced powerful rooted trees, where a prime index of n is a number m such that prime(m) divides n.

Examples

			The sequence of Matula-Goebel numbers of series-reduced powerful rooted trees together with the corresponding trees begins:
    1: o
    4: (oo)
    8: (ooo)
   16: (oooo)
   32: (ooooo)
   49: ((oo)(oo))
   64: (oooooo)
  128: (ooooooo)
  196: (oo(oo)(oo))
  256: (oooooooo)
  343: ((oo)(oo)(oo))
  361: ((ooo)(ooo))
  392: (ooo(oo)(oo))
  512: (ooooooooo)
  784: (oooo(oo)(oo))
		

Crossrefs

Programs

  • Mathematica
    powgoQ[n_]:=Or[n==1,And[Min@@FactorInteger[n][[All,2]]>1,And@@powgoQ/@PrimePi/@FactorInteger[n][[All,1]]]];
    Select[Range[1000],powgoQ] (* Gus Wiseman, Aug 31 2018 *)
    (* Second program: *)
    Nest[Function[a, Append[a, Block[{k = a[[-1]] + 1}, While[Nand[AllTrue[#[[All, -1]], # > 1 & ], AllTrue[PrimePi[#[[All, 1]] ], MemberQ[a, #] &]] &@ FactorInteger@ k, k++]; k]]], {1}, 44] (* Michael De Vlieger, Aug 05 2018 *)

Extensions

Rewritten by Gus Wiseman, Aug 31 2018

A317708 Number of aperiodic relatively prime trees with n nodes.

Original entry on oeis.org

1, 1, 1, 2, 4, 10, 20, 48, 108, 255, 595, 1435, 3434, 8372, 20419, 50289, 124289, 309122, 771508, 1934462
Offset: 1

Views

Author

Gus Wiseman, Aug 05 2018

Keywords

Comments

An unlabeled rooted tree is aperiodic and relatively prime iff either it is a single node or a single node with a single aperiodic relatively prime branch, or the branches directly under any given node have empty intersection (relatively prime) and also have relatively prime multiplicities (aperiodic) and are themselves aperiodic relatively prime trees.

Examples

			The a(6) = 10 aperiodic relatively prime trees:
  (((((o)))))
  (((o(o))))
  ((o((o))))
  ((oo(o)))
  (o(((o))))
  (o(o(o)))
  ((o)((o)))
  (oo((o)))
  (o(o)(o))
  (ooo(o))
		

Crossrefs

Programs

  • Mathematica
    rurt[n_]:=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[rurt/@ptn]],Or[Length[#]==1,And[Intersection@@#=={},GCD@@Length/@Split[#]==1]]&],{ptn,IntegerPartitions[n-1]}]];
    Table[Length[rurt[n]],{n,10}]

A320222 Number of unlabeled rooted trees with n nodes in which the non-leaf branches directly under any given node are all equal.

Original entry on oeis.org

1, 1, 2, 4, 9, 18, 39, 78, 161, 324, 658, 1316, 2657, 5314, 10668, 21347, 42777, 85554, 171290, 342580, 685498, 1371037, 2742733, 5485466, 10972351, 21944711, 43892080, 87784323, 175574004, 351148008, 702307038, 1404614076, 2809249582, 5618499824, 11237042426
Offset: 1

Views

Author

Gus Wiseman, Oct 07 2018

Keywords

Comments

This is a weaker condition than achirality (cf. A003238).

Examples

			The a(1) = 1 through a(6) = 18 rooted trees:
  o  (o)  (oo)   (ooo)    (oooo)     (ooooo)
          ((o))  ((oo))   ((ooo))    ((oooo))
                 (o(o))   (o(oo))    (o(ooo))
                 (((o)))  (oo(o))    (oo(oo))
                          (((oo)))   (ooo(o))
                          ((o)(o))   (((ooo)))
                          ((o(o)))   ((o(oo)))
                          (o((o)))   ((oo(o)))
                          ((((o))))  (o((oo)))
                                     (o(o)(o))
                                     (o(o(o)))
                                     (oo((o)))
                                     ((((oo))))
                                     (((o)(o)))
                                     (((o(o))))
                                     ((o((o))))
                                     (o(((o))))
                                     (((((o)))))
		

Crossrefs

Programs

  • Mathematica
    saue[n_]:=Sum[If[SameQ@@DeleteCases[ptn,1],If[DeleteCases[ptn,1]=={},1,saue[DeleteCases[ptn,1][[1]]]],0],{ptn,IntegerPartitions[n-1]}];
    Table[saue[n],{n,15}]
  • PARI
    seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + sum(k=2, n-1, (n-1)\k*v[k])); v} \\ Andrew Howroyd, Oct 26 2018

Formula

a(n) = 1 + Sum_{k = 2..n-1} floor((n-1)/k) * a(k).
a(n) ~ c * 2^n, where c = 0.3270422384018894564479397100499014525700668391191792769625407295138546463... - Vaclav Kotesovec, Sep 07 2019

A317718 Number of uniform relatively prime rooted trees with n nodes.

Original entry on oeis.org

1, 1, 2, 4, 7, 13, 27, 55, 125, 278, 650, 1510, 3624, 8655, 21017, 51212, 125857, 310581, 770767, 1920226
Offset: 1

Views

Author

Gus Wiseman, Aug 05 2018

Keywords

Comments

An unlabeled rooted tree is uniform and relatively prime iff either it is a single node or a single node with a single uniform relatively prime branch, or the branches of the root have empty intersection (relatively prime) and equal multiplicities (uniform) and are themselves uniform relatively prime trees.

Examples

			The a(6) = 13 uniform relatively prime rooted trees:
  (((((o)))))
  ((((oo))))
  (((o(o))))
  (((ooo)))
  ((o((o))))
  ((o(oo)))
  ((oooo))
  (o(((o))))
  (o((oo)))
  (o(o(o)))
  (o(ooo))
  ((o)((o)))
  (ooooo)
		

Crossrefs

Programs

  • Mathematica
    purt[n_]:=purt[n]=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[purt/@ptn]],Or[Length[#]==1,And[SameQ@@Length/@Split[#],Intersection@@#=={}]]&],{ptn,IntegerPartitions[n-1]}]];
    Table[Length[purt[n]],{n,20}]

A306201 Number of unlabeled balanced rooted semi-identity trees with n nodes.

Original entry on oeis.org

0, 1, 1, 2, 3, 4, 6, 8, 12, 16, 25, 35, 53, 77, 117, 173, 265, 396, 605, 919, 1408, 2147, 3305, 5070, 7819, 12049, 18635, 28811, 44672, 69264, 107618, 167292, 260446, 405686, 632743, 987441, 1542555, 2411208, 3772247, 5905002, 9250436, 14499234, 22740910, 35686092
Offset: 0

Views

Author

Gus Wiseman, Jan 29 2019

Keywords

Comments

A rooted tree is a semi-identity tree if the non-leaf branches of the root are all distinct and are themselves semi-identity trees. It is balanced if all leaves are the same distance from the root. The only balanced identity trees are rooted paths.

Examples

			The a(1) = 1 through a(7) = 8 balanced rooted semi-identity trees:
  o  (o)  (oo)   (ooo)    (oooo)     (ooooo)      (oooooo)
          ((o))  ((oo))   ((ooo))    ((oooo))     ((ooooo))
                 (((o)))  (((oo)))   (((ooo)))    (((oooo)))
                          ((((o))))  ((o)(oo))    ((o)(ooo))
                                     ((((oo))))   ((((ooo))))
                                     (((((o)))))  (((o)(oo)))
                                                  (((((oo)))))
                                                  ((((((o))))))
		

Crossrefs

Programs

  • Mathematica
    ursit[n_]:=Join@@Table[Select[Union[Sort/@Tuples[ursit/@ptn]],UnsameQ@@DeleteCases[#,{}]&],{ptn,IntegerPartitions[n-1]}];
    Table[Length[Select[ursit[n],SameQ@@Length/@Position[#,{}]&]],{n,10}]

Extensions

More terms from Alois P. Heinz, Jan 29 2019

A317709 Aperiodic relatively prime tree numbers. Matula-Goebel numbers of aperiodic relatively prime trees.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 11, 12, 13, 15, 18, 20, 22, 24, 26, 29, 30, 31, 33, 37, 40, 41, 44, 45, 47, 48, 50, 52, 54, 55, 58, 60, 61, 62, 66, 71, 72, 74, 75, 78, 79, 80, 82, 88, 89, 90, 93, 94, 96, 99, 101, 104, 108, 109, 110, 113, 116, 120, 122, 123, 124, 127, 130
Offset: 1

Views

Author

Gus Wiseman, Aug 05 2018

Keywords

Comments

A positive integer n is in the sequence iff either n = 1 or n is a prime number whose prime index already belongs to the sequence or n is not a perfect power and its prime indices are relatively prime numbers already belonging to the sequence. A prime index of n is a number m such that prime(m) divides n.

Examples

			The sequence of aperiodic relatively prime tree numbers together with their Matula-Goebel trees begins:
   1: o
   2: (o)
   3: ((o))
   5: (((o)))
   6: (o(o))
  10: (o((o)))
  11: ((((o))))
  12: (oo(o))
  13: ((o(o)))
  15: ((o)((o)))
  18: (o(o)(o))
  20: (oo((o)))
  22: (o(((o))))
  24: (ooo(o))
  26: (o(o(o)))
  29: ((o((o))))
  30: (o(o)((o)))
  31: (((((o)))))
		

Crossrefs

Programs

  • Mathematica
    rupQ[n_]:=Or[n==1,If[PrimeQ[n],rupQ[PrimePi[n]],And[GCD@@FactorInteger[n][[All,2]]==1,GCD@@PrimePi/@FactorInteger[n][[All,1]]==1,And@@rupQ/@PrimePi/@FactorInteger[n][[All,1]]]]];
    Select[Range[100],rupQ]
Showing 1-10 of 20 results. Next