cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A111299 Numbers whose Matula tree is a binary tree (i.e., root has degree 2 and all nodes except root and leaves have degree 3).

Original entry on oeis.org

4, 14, 49, 86, 301, 454, 886, 1589, 1849, 3101, 3986, 6418, 9761, 13766, 13951, 19049, 22463, 26798, 31754, 48181, 51529, 57026, 75266, 85699, 93793, 100561, 111139, 128074, 137987, 196249, 199591, 203878, 263431, 295969, 298154, 302426, 426058, 448259, 452411
Offset: 1

Views

Author

Keith Briggs, Nov 02 2005

Keywords

Comments

This sequence should probably start with 1. Then a number k is in the sequence iff k = 1 or k = prime(x) * prime(y) with x and y already in the sequence. - Gus Wiseman, May 04 2021

Examples

			From _Gus Wiseman_, May 04 2021: (Start)
The sequence of trees (starting with 1) begins:
     1: o
     4: (oo)
    14: (o(oo))
    49: ((oo)(oo))
    86: (o(o(oo)))
   301: ((oo)(o(oo)))
   454: (o((oo)(oo)))
   886: (o(o(o(oo))))
  1589: ((oo)((oo)(oo)))
  1849: ((o(oo))(o(oo)))
  3101: ((oo)(o(o(oo))))
  3986: (o((oo)(o(oo))))
  6418: (o(o((oo)(oo))))
  9761: ((o(oo))((oo)(oo)))
(End)
		

Crossrefs

Cf. A245824 (by number of leaves).
These trees are counted by 2*A001190 - 1.
The semi-binary version is A292050 (counted by A001190).
The semi-identity case is A339193 (counted by A063895).
A000081 counts unlabeled rooted trees with n nodes.
A007097 ranks rooted chains.
A276625 ranks identity trees, counted by A004111.
A306202 ranks semi-identity trees, counted by A306200.
A306203 ranks balanced semi-identity trees, counted by A306201.
A331965 ranks lone-child avoiding semi-identity trees, counted by A331966.

Programs

  • Mathematica
    nn=20000;
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    binQ[n_]:=Or[n===1,With[{m=primeMS[n]},And[Length[m]===2,And@@binQ/@m]]];
    Select[Range[2,nn],binQ] (* Gus Wiseman, Aug 28 2017 *)
  • PARI
    i(n)=n==2 || is(primepi(n))
    is(n)=if(n<14,return(n==4)); my(f=factor(n),t=#f[,1]); if(t>1, t==2 && f[1,2]==1 && f[2,2]==1 && i(f[1,1]) && i(f[2,1]), f[1,2]==2 && i(f[1,1])) \\ Charles R Greathouse IV, Mar 29 2013
    
  • PARI
    list(lim)=my(v=List(), t); forprime(p=2, sqrt(lim), t=p; forprime(q=p, lim\t, if(i(p)&&i(q), listput(v, t*q)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Mar 29 2013
    
  • PARI
    \\ Also see links.

Formula

The Matula tree of k is defined as follows:
matula(k):
create a node labeled k
for each prime factor m of k:
add the subtree matula(prime(m)), by an edge labeled m
return the node

Extensions

Definition corrected by Charles R Greathouse IV, Mar 29 2013
a(27)-a(39) from Charles R Greathouse IV, Mar 29 2013

A300660 Number of unlabeled rooted phylogenetic trees with n (leaf-) nodes such that for each inner node all children are either leaves or roots of distinct subtrees.

Original entry on oeis.org

0, 1, 1, 2, 3, 6, 13, 30, 72, 182, 467, 1222, 3245, 8722, 23663, 64758, 178459, 494922, 1380105, 3867414, 10884821, 30756410, 87215419, 248117618, 707952902, 2025479210, 5809424605, 16700811214, 48113496645, 138884979562, 401645917999, 1163530868090
Offset: 0

Views

Author

Alois P. Heinz, Jun 18 2018

Keywords

Comments

From Gus Wiseman, Jul 31 2018 and Feb 06 2020: (Start)
a(n) is the number of lone-child-avoiding rooted identity trees whose leaves form an integer partition of n. For example, the following are the a(6) = 13 lone-child-avoiding rooted identity trees whose leaves form an integer partition of 6.
6,
(15),
(24),
(123), (1(23)), (2(13)), (3(12)),
(1(14)),
(1(1(13))),
(12(12)), (1(2(12))), (2(1(12))),
(1(1(1(12)))).
(End)

Examples

			:   a(3) = 2:        :   a(4) = 3:                      :
:      o       o     :        o         o        o      :
:     / \     /|\    :       / \       / \     /( )\    :
:    o   N   N N N   :      o   N     o   N   N N N N   :
:   ( )              :     / \       /|\                :
:   N N              :    o   N     N N N               :
:                    :   ( )                            :
:                    :   N N                            :
From _Gus Wiseman_, Feb 06 2020: (Start)
The a(2) = 1 through a(6) = 13 unlabeled rooted phylogenetic semi-identity trees:
  (oo) (ooo)     (oooo)         (ooooo)             (oooooo)
       ((o)(oo)) ((o)(ooo))     ((o)(oooo))         ((o)(ooooo))
                 ((o)((o)(oo))) ((oo)(ooo))         ((oo)(oooo))
                                ((o)((o)(ooo)))     ((o)(oo)(ooo))
                                ((oo)((o)(oo)))     (((o)(oo))(ooo))
                                ((o)((o)((o)(oo)))) ((o)((o)(oooo)))
                                                    ((o)((oo)(ooo)))
                                                    ((oo)((o)(ooo)))
                                                    ((o)(oo)((o)(oo)))
                                                    ((o)((o)((o)(ooo))))
                                                    ((o)((oo)((o)(oo))))
                                                    ((oo)((o)((o)(oo))))
                                                    ((o)((o)((o)((o)(oo)))))
(End)
		

Crossrefs

Programs

  • Maple
    b:= proc(n,i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1)*binomial(a(i), j), j=0..n/i)))
        end:
    a:= n-> `if`(n=0, 0, 1+b(n, n-1)):
    seq(a(n), n=0..30);
  • Mathematica
    b[0, ] = 1; b[, _?NonPositive] = 0;
    b[n_, i_] := b[n, i] = Sum[b[n-i*j, i-1]*Binomial[a[i], j], {j, 0, n/i}];
    a[0] = 0; a[n_] := a[n] = 1 + b[n, n-1];
    Table[a[n], {n, 0, 31}] (* Jean-François Alcover, May 03 2019, from Maple *)
    ursit[n_]:=Prepend[Join@@Table[Select[Union[Sort/@Tuples[ursit/@ptn]],UnsameQ@@#&],{ptn,Select[IntegerPartitions[n],Length[#]>1&]}],n];
    Table[Length[ursit[n]],{n,10}] (* Gus Wiseman, Feb 06 2020 *)

Formula

a(n) ~ c * d^n / n^(3/2), where d = 3.045141208159736483720243229947630323380565686... and c = 0.2004129296838557718008171812000512670126... - Vaclav Kotesovec, Aug 27 2018

A038348 Expansion of (1/(1-x^2))*Product_{m>=0} 1/(1-x^(2m+1)).

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 8, 11, 14, 19, 24, 31, 39, 49, 61, 76, 93, 114, 139, 168, 203, 244, 292, 348, 414, 490, 579, 682, 801, 938, 1097, 1278, 1487, 1726, 1999, 2311, 2667, 3071, 3531, 4053, 4644, 5313, 6070, 6923, 7886, 8971, 10190, 11561
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n+2 with exactly one even part. - Vladeta Jovovic, Sep 10 2003
Also, number of partitions of n with at most one even part. - Vladeta Jovovic, Sep 10 2003
Also total number of parts, counted without multiplicity, in all partitions of n into odd parts, offset 1. - Vladeta Jovovic, Mar 27 2005
a(n) = Sum_{k>=1} k*A116674(n+1,k). - Emeric Deutsch, Feb 22 2006
Equals row sums of triangle A173305. - Gary W. Adamson, Feb 15 2010
Equals partial sums of A025147 (observed by Jonathan Vos Post, proved by several correspondents).
Conjecture: The n-th derivative of Gamma(x+1) at x = 0 has a(n+1) terms. For example, d^4/dx^4_(x = 0) Gamma(x+1) = 8*eulergamma*zeta(3) + eulergamma^4 + eulergamma^2*Pi^2 + 3*Pi^4/20 which has a(5) = 4 terms. - David Ulgenes, Dec 05 2023

Examples

			From _Gus Wiseman_, Sep 23 2019: (Start)
Also the number of integer partitions of n that are strict except possibly for any number of 1's. For example, the a(1) = 1 through a(7) = 11 partitions are:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (21)   (31)    (32)     (42)      (43)
             (111)  (211)   (41)     (51)      (52)
                    (1111)  (311)    (321)     (61)
                            (2111)   (411)     (421)
                            (11111)  (3111)    (511)
                                     (21111)   (3211)
                                     (111111)  (4111)
                                               (31111)
                                               (211111)
                                               (1111111)
(End)
		

Crossrefs

Programs

  • Maple
    f:=1/(1-x^2)/product(1-x^(2*j-1),j=1..32): fser:=series(f,x=0,62): seq(coeff(fser,x,n),n=0..58); # Emeric Deutsch, Feb 22 2006
  • Mathematica
    mmax = 47; CoefficientList[ Series[ (1/(1-x^2))*Product[1/(1-x^(2m+1)), {m, 0, mmax}], {x, 0, mmax}], x] (* Jean-François Alcover, Jun 21 2011 *)
  • SageMath
    # uses[EulerTransform from A166861]
    def g(n): return n % 2 if n > 2 else 1
    a = EulerTransform(g)
    print([a(n) for n in range(48)]) # Peter Luschny, Dec 04 2020

Formula

a(n) = A036469(n) - a(n-1) = Sum_{k=0..n} (-1)^k*A036469(n-k). - Vladeta Jovovic, Sep 10 2003
a(n) = A000009(n) + a(n-2). - Vladeta Jovovic, Feb 10 2004
G.f.: 1/((1-x^2)*Product_{j>=1} (1 - x^(2*j-1))). - Emeric Deutsch, Feb 22 2006
From Vaclav Kotesovec, Aug 16 2015: (Start)
a(n) ~ (1/2) * A036469(n).
a(n) ~ 3^(1/4) * exp(Pi*sqrt(n/3)) / (4*Pi*n^(1/4)). (End)
Euler transform of the sequence [1, 1, period(1, 0)] (A266591). - Georg Fischer, Dec 04 2020

A063895 Start with x, xy; then concatenate each word in turn with all preceding words, getting x xy xxy xxxy xyxxy xxxxy xyxxxy xxyxxxy ...; sequence gives number of words of length n. Also binary trees by degree: x (x,y) (x,(x,y)) (x,(x,(x,y))) ((x,y),(x,(x,y)))...

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 6, 11, 22, 43, 88, 179, 372, 774, 1631, 3448, 7347, 15713, 33791, 72923, 158021, 343495, 749102, 1638103, 3591724, 7893802, 17387931, 38379200, 84875596, 188036830, 417284181, 927469845, 2064465341, 4601670625, 10270463565, 22950838755
Offset: 1

Views

Author

Claude Lenormand (claude.lenormand(AT)free.fr), Aug 29 2001

Keywords

Comments

Also binary rooted identity trees (those with no symmetries, cf. A004111).
From Gus Wiseman, May 04 2021: (Start)
Also the number of unlabeled binary rooted semi-identity trees with 2*n - 1 nodes. In a semi-identity tree, only the non-leaf branches directly under any given vertex are required to be distinct. Alternatively, an unlabeled rooted tree is a semi-identity tree iff the non-leaf branches of the root are all distinct and are themselves semi-identity trees. For example, the a(3) = 1 through a(6) = 6 trees are:
(o(oo)) (o(o(oo))) ((oo)(o(oo))) ((oo)(o(o(oo)))) ((o(oo))(o(o(oo))))
(o(o(o(oo)))) (o((oo)(o(oo)))) ((oo)((oo)(o(oo))))
(o(o(o(o(oo))))) ((oo)(o(o(o(oo)))))
(o((oo)(o(o(oo)))))
(o(o((oo)(o(oo)))))
(o(o(o(o(o(oo))))))
The a(8) = 11 trees with 15 nodes:
((o(oo))((oo)(o(oo))))
((o(oo))(o(o(o(oo)))))
((oo)((oo)(o(o(oo)))))
((oo)(o((oo)(o(oo)))))
((oo)(o(o(o(o(oo))))))
(o((o(oo))(o(o(oo)))))
(o((oo)((oo)(o(oo)))))
(o((oo)(o(o(o(oo))))))
(o(o((oo)(o(o(oo))))))
(o(o(o((oo)(o(oo))))))
(o(o(o(o(o(o(oo)))))))
(End)

Crossrefs

The non-semi-identity version is 2*A001190(n)-1, ranked by A111299.
Semi-binary trees are also counted by A001190, but ranked by A292050.
The not necessarily binary version is A306200, ranked A306202.
The Matula-Goebel numbers of these trees are A339193.
The plane tree version is A343663.
A000081 counts unlabeled rooted trees with n nodes.
A004111 counts identity trees, ranked by A276625.
A306201 counts balanced semi-identity trees, ranked by A306203.
A331966 counts lone-child avoiding semi-identity trees, ranked by A331965.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, n*(3-n)/2, add(a(i)*a(n-i),
          i=1..(n-1)/2)+`if`(irem(n, 2, 'r')=0, (p->(p-1)*p/2)(a(r)), 0))
        end:
    seq(a(n), n=1..50);  # Alois P. Heinz, Aug 02 2013
  • Mathematica
    a[n_] := a[n] = If[n<3, n*(3-n)/2, Sum[a[i]*a[n-i], {i, 1, (n-1)/2}]+If[{q, r} = QuotientRemainder[n, 2]; r == 0, (a[q]-1)*a[q]/2, 0]]; Table[a[n], {n, 1, 36}] (* Jean-François Alcover, Feb 25 2014, after Alois P. Heinz *)
    ursiq[n_]:=Join@@Table[Select[Union[Sort/@Tuples[ursiq/@ptn]],#=={}||#=={{},{}}||Length[#]==2&&(UnsameQ@@DeleteCases[#,{}])&],{ptn,IntegerPartitions[n-1]}];Table[Length[ursiq[n]],{n,1,15,2}] (* Gus Wiseman, May 04 2021 *)
  • PARI
    {a(n)=local(A, m); if(n<1, 0, m=1; A=O(x); while( m<=n, m*=2; A=1-sqrt(1-2*x-2*x^2+subst(A, x, x^2))); polcoeff(A, n))}

Formula

a(n) = (sum a(i)*a(j), i+j=n, i2. a(1)=a(2)=1.
G.f. A(x) = 1-sqrt(1-2x-2x^2+A(x^2)) satisfies x+x^2-A(x)+(A(x)^2-A(x^2))/2=0, A(0)=0. - Michael Somos, Sep 06 2003
a(n) ~ c * d^n / n^(3/2), where d = 2.33141659246516873904600076533362924695..., c = 0.2873051160895040470174351963... . - Vaclav Kotesovec, Sep 11 2014

Extensions

Additional comments and g.f. from Christian G. Bower, Nov 29 2001

A331683 One and all numbers of the form 2^k * prime(j) for k > 0 and j already in the sequence.

Original entry on oeis.org

1, 4, 8, 14, 16, 28, 32, 38, 56, 64, 76, 86, 106, 112, 128, 152, 172, 212, 214, 224, 256, 262, 304, 326, 344, 424, 428, 448, 512, 524, 526, 608, 622, 652, 688, 766, 848, 856, 886, 896, 1024, 1048, 1052, 1154, 1216, 1226, 1244, 1304, 1376, 1438, 1532, 1696
Offset: 1

Views

Author

Gus Wiseman, Jan 30 2020

Keywords

Comments

Also Matula-Goebel numbers of lone-child-avoiding rooted trees at with at most one non-leaf branch under any given vertex. A rooted tree is lone-child-avoiding if there are no unary branchings. The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of the root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
Also Matula-Goebel numbers of lone-child-avoiding locally disjoint semi-identity trees. Locally disjoint means no branch of any vertex overlaps a different (unequal) branch of the same vertex. In a semi-identity tree, all non-leaf branches of any given vertex are distinct.

Examples

			The sequence of all lone-child-avoiding rooted trees with at most one non-leaf branch under any given vertex together with their Matula-Goebel numbers begins:
    1: o
    4: (oo)
    8: (ooo)
   14: (o(oo))
   16: (oooo)
   28: (oo(oo))
   32: (ooooo)
   38: (o(ooo))
   56: (ooo(oo))
   64: (oooooo)
   76: (oo(ooo))
   86: (o(o(oo)))
  106: (o(oooo))
  112: (oooo(oo))
  128: (ooooooo)
  152: (ooo(ooo))
  172: (oo(o(oo)))
  212: (oo(oooo))
  214: (o(oo(oo)))
  224: (ooooo(oo))
		

Crossrefs

These trees counted by number of vertices are A212804.
The semi-lone-child-avoiding version is A331681.
The non-semi-identity version is A331871.
Lone-child-avoiding rooted trees are counted by A001678.
Matula-Goebel numbers of lone-child-avoiding rooted trees are A291636.
Unlabeled semi-identity trees are counted by A306200, with Matula-Goebel numbers A306202.
Locally disjoint rooted trees are counted by A316473.
Matula-Goebel numbers of locally disjoint rooted trees are A316495.
Lone-child-avoiding locally disjoint rooted trees by leaves are A316697.

Programs

  • Maple
    N:= 10^4: # for terms <= N
    S:= {1}:
    with(queue):
    Q:= new(1):
    while not empty(Q) do
      r:= dequeue(Q);
      p:= ithprime(r);
      newS:= {seq(2^i*p,i=1..ilog2(N/p))} minus S;
      S:= S union newS;
      for s in newS do enqueue(Q,s) od:
    od:
    sort(convert(S,list)); # Robert Israel, Feb 05 2020
  • Mathematica
    uryQ[n_]:=n==1||MatchQ[FactorInteger[n],({{2,},{p,1}}/;uryQ[PrimePi[p]])|({{2,k_}}/;k>1)];
    Select[Range[100],uryQ]

Formula

Intersection of A291636, A316495, and A306202.

A331934 Number of semi-lone-child-avoiding rooted trees with n unlabeled vertices.

Original entry on oeis.org

1, 1, 1, 2, 4, 7, 15, 29, 62, 129, 279, 602, 1326, 2928, 6544, 14692, 33233, 75512, 172506, 395633, 911108, 2105261, 4880535, 11346694, 26451357, 61813588, 144781303, 339820852, 799168292, 1882845298, 4443543279, 10503486112, 24864797324, 58944602767, 139918663784
Offset: 1

Views

Author

Gus Wiseman, Feb 03 2020

Keywords

Comments

A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless the child is an endpoint/leaf.

Examples

			The a(1) = 1 through a(7) = 15 trees:
  o  (o)  (oo)  (ooo)   (oooo)    (ooooo)    (oooooo)
                (o(o))  (o(oo))   (o(ooo))   (o(oooo))
                        (oo(o))   (oo(oo))   (oo(ooo))
                        ((o)(o))  (ooo(o))   (ooo(oo))
                                  ((o)(oo))  (oooo(o))
                                  (o(o)(o))  ((o)(ooo))
                                  (o(o(o)))  ((oo)(oo))
                                             (o(o)(oo))
                                             (o(o(oo)))
                                             (o(oo(o)))
                                             (oo(o)(o))
                                             (oo(o(o)))
                                             ((o)(o)(o))
                                             ((o)(o(o)))
                                             (o((o)(o)))
		

Crossrefs

The same trees counted by leaves are A050381.
The locally disjoint version is A331872.
Matula-Goebel numbers of these trees are A331935.
Lone-child-avoiding rooted trees are A001678.

Programs

  • Mathematica
    sse[n_]:=Switch[n,1,{{}},2,{{{}}},_,Join@@Function[c,Union[Sort/@Tuples[sse/@c]]]/@Rest[IntegerPartitions[n-1]]];
    Table[Length[sse[n]],{n,10}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(v=[1,1]); for(n=2, n-1, v=concat(v, EulerT(v)[n] - v[n])); v} \\ Andrew Howroyd, Feb 09 2020

Formula

Product_{k > 0} 1/(1 - x^k)^a(k) = A(x) + A(x)/x - x where A(x) = Sum_{k > 0} x^k a(k).
Euler transform is b(1) = 1, b(n > 1) = a(n) + a(n + 1).

Extensions

Terms a(25) and beyond from Andrew Howroyd, Feb 09 2020

A306202 Matula-Goebel numbers of rooted semi-identity trees.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 24, 26, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 51, 52, 53, 55, 56, 57, 58, 59, 60, 62, 64, 65, 66, 67, 68, 70, 71, 73, 74, 76, 77, 78, 79, 80, 82, 84, 85
Offset: 1

Views

Author

Gus Wiseman, Jan 29 2019

Keywords

Comments

Definition: A positive integer belongs to the sequence iff its prime indices greater than 1 are distinct and already belong to the sequence. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of all unlabeled rooted semi-identity trees together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   3: ((o))
   4: (oo)
   5: (((o)))
   6: (o(o))
   7: ((oo))
   8: (ooo)
  10: (o((o)))
  11: ((((o))))
  12: (oo(o))
  13: ((o(o)))
  14: (o(oo))
  15: ((o)((o)))
  16: (oooo)
  17: (((oo)))
  19: ((ooo))
  20: (oo((o)))
  21: ((o)(oo))
  22: (o(((o))))
  24: (ooo(o))
  26: (o(o(o)))
  28: (oo(oo))
  29: ((o((o))))
  30: (o(o)((o)))
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    psidQ[n_]:=And[UnsameQ@@DeleteCases[primeMS[n],1],And@@psidQ/@primeMS[n]];
    Select[Range[100],psidQ]

A316694 Number of lone-child-avoiding locally disjoint rooted identity trees whose leaves form an integer partition of n.

Original entry on oeis.org

1, 1, 2, 3, 6, 13, 28, 62, 143, 338, 804, 1948, 4789, 11886, 29796, 75316, 191702, 491040, 1264926, 3274594, 8514784, 22229481, 58243870
Offset: 1

Views

Author

Gus Wiseman, Jul 10 2018

Keywords

Comments

A rooted tree is lone-child-avoiding if every non-leaf node has at least two branches. It is locally disjoint if no branch overlaps any other (unequal) branch of the same root. It is an identity tree if no branch appears multiple times under the same root.

Examples

			The a(7) = 28 rooted trees:
  7,
  (16),
  (25),
  (1(15)),
  (34),
  (1(24)), (2(14)), (4(12)), (124),
  (1(1(14))),
  (3(13)),
  (2(23)),
  (1(1(23))), (1(2(13))), (1(3(12))), (1(123)), (2(1(13))), (3(1(12))), (12(13)), (13(12)),
  (1(1(1(13)))),
  (2(2(12))),
  (1(1(2(12)))), (1(2(1(12)))), (1(12(12))), (2(1(1(12)))), (12(1(12))),
  (1(1(1(1(12))))).
Missing from this list but counted by A300660 are ((12)(13)) and ((12)(1(12))).
		

Crossrefs

The semi-identity tree version is A212804.
Not requiring local disjointness gives A300660.
The non-identity tree version is A316696.
This is the case of A331686 where all leaves are singletons.
Rooted identity trees are A004111.
Locally disjoint rooted identity trees are A316471.
Lone-child-avoiding locally disjoint rooted trees are A331680.
Locally disjoint enriched identity p-trees are A331684.

Programs

  • Mathematica
    disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
    nms[n_]:=nms[n]=Prepend[Join@@Table[Select[Union[Sort/@Tuples[nms/@ptn]],And[UnsameQ@@#,disjointQ[#]]&],{ptn,Rest[IntegerPartitions[n]]}],{n}];
    Table[Length[nms[n]],{n,10}]

Extensions

a(21)-a(23) from Robert Price, Sep 16 2018
Updated with corrected terminology by Gus Wiseman, Feb 06 2020

A331965 Matula-Goebel numbers of lone-child-avoiding rooted semi-identity trees.

Original entry on oeis.org

1, 4, 8, 14, 16, 28, 32, 38, 56, 64, 76, 86, 106, 112, 128, 133, 152, 172, 212, 214, 224, 256, 262, 266, 301, 304, 326, 344, 371, 424, 428, 448, 512, 524, 526, 532, 602, 608, 622, 652, 688, 742, 749, 766, 817, 848, 856, 886, 896, 917, 1007, 1024, 1048, 1052
Offset: 1

Views

Author

Gus Wiseman, Feb 04 2020

Keywords

Comments

First differs from A331683 in having 133, the Matula-Goebel number of the tree ((oo)(ooo)).
Lone-child-avoiding means there are no unary branchings.
In a semi-identity tree, the non-leaf branches of any given vertex are all distinct.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
Consists of one, and all composite numbers that are n times a power of two, where n is a squarefree number whose prime indices already belong to the sequence, and a prime index of n is a number m such that prime(m) divides n. [Clarified by Peter Munn and Gus Wiseman, Jun 24 2021]

Examples

			The sequence of all lone-child-avoiding rooted semi-identity trees together with their Matula-Goebel numbers begins:
    1: o
    4: (oo)
    8: (ooo)
   14: (o(oo))
   16: (oooo)
   28: (oo(oo))
   32: (ooooo)
   38: (o(ooo))
   56: (ooo(oo))
   64: (oooooo)
   76: (oo(ooo))
   86: (o(o(oo)))
  106: (o(oooo))
  112: (oooo(oo))
  128: (ooooooo)
  133: ((oo)(ooo))
  152: (ooo(ooo))
  172: (oo(o(oo)))
  212: (oo(oooo))
  214: (o(oo(oo)))
The sequence of terms together with their prime indices begins:
    1: {}                 224: {1,1,1,1,1,4}
    4: {1,1}              256: {1,1,1,1,1,1,1,1}
    8: {1,1,1}            262: {1,32}
   14: {1,4}              266: {1,4,8}
   16: {1,1,1,1}          301: {4,14}
   28: {1,1,4}            304: {1,1,1,1,8}
   32: {1,1,1,1,1}        326: {1,38}
   38: {1,8}              344: {1,1,1,14}
   56: {1,1,1,4}          371: {4,16}
   64: {1,1,1,1,1,1}      424: {1,1,1,16}
   76: {1,1,8}            428: {1,1,28}
   86: {1,14}             448: {1,1,1,1,1,1,4}
  106: {1,16}             512: {1,1,1,1,1,1,1,1,1}
  112: {1,1,1,1,4}        524: {1,1,32}
  128: {1,1,1,1,1,1,1}    526: {1,56}
  133: {4,8}              532: {1,1,4,8}
  152: {1,1,1,8}          602: {1,4,14}
  172: {1,1,14}           608: {1,1,1,1,1,8}
  212: {1,1,16}           622: {1,64}
  214: {1,28}             652: {1,1,38}
		

Crossrefs

The non-semi case is {1}.
Not requiring lone-child-avoidance gives A306202.
The locally disjoint version is A331683.
These trees are counted by A331966.
The semi-lone-child-avoiding case is A331994.
Matula-Goebel numbers of rooted identity trees are A276625.
Matula-Goebel numbers of lone-child-avoiding rooted trees are A291636.
Semi-identity trees are counted by A306200.

Programs

  • Mathematica
    csiQ[n_]:=n==1||!PrimeQ[n]&&FreeQ[FactorInteger[n],{?(#>2&),?(#>1&)}]&&And@@csiQ/@PrimePi/@First/@FactorInteger[n];
    Select[Range[100],csiQ]

Formula

Intersection of A291636 and A306202.

A331966 Number of lone-child-avoiding rooted semi-identity trees with n vertices.

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 5, 9, 16, 30, 55, 105, 200, 388, 754, 1483, 2923, 5807, 11575, 23190, 46608, 94043, 190287, 386214, 785831, 1602952, 3276845, 6712905, 13778079, 28330583, 58350582, 120370731, 248676129, 514459237, 1065696295, 2210302177, 4589599429, 9540623926
Offset: 1

Views

Author

Gus Wiseman, Feb 05 2020

Keywords

Comments

Lone-child-avoiding means there are no unary branchings.
In a semi-identity tree, the non-leaf branches of any given vertex are distinct.

Examples

			The a(1) = 1 through a(9) = 16 trees (empty column shown as dot):
  o  .  (oo)  (ooo)  (oooo)   (ooooo)   (oooooo)    (ooooooo)    (oooooooo)
                     (o(oo))  (o(ooo))  (o(oooo))   (o(ooooo))   (o(oooooo))
                              (oo(oo))  (oo(ooo))   (oo(oooo))   (oo(ooooo))
                                        (ooo(oo))   (ooo(ooo))   (ooo(oooo))
                                        (o(o(oo)))  (oooo(oo))   (oooo(ooo))
                                                    ((oo)(ooo))  (ooooo(oo))
                                                    (o(o(ooo)))  ((oo)(oooo))
                                                    (o(oo(oo)))  (o(o(oooo)))
                                                    (oo(o(oo)))  (o(oo)(ooo))
                                                                 (o(oo(ooo)))
                                                                 (o(ooo(oo)))
                                                                 (oo(o(ooo)))
                                                                 (oo(oo(oo)))
                                                                 (ooo(o(oo)))
                                                                 ((oo)(o(oo)))
                                                                 (o(o(o(oo))))
		

Crossrefs

The non-semi case is A000007.
Lone-child-avoiding rooted trees are A001678.
The locally disjoint case is A212804.
Not requiring lone-child-avoidance gives A306200.
Matula-Goebel numbers of these trees are A331965.
The semi-lone-child-avoiding version is A331993.

Programs

  • Mathematica
    ssb[n_]:=If[n==1,{{}},Join@@Function[c,Select[Union[Sort/@Tuples[ssb/@c]],UnsameQ@@DeleteCases[#,{}]&]]/@Rest[IntegerPartitions[n-1]]];
    Table[Length[ssb[n]],{n,10}]
  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
    seq(n)={my(v=[0, 0]); for(n=2, n-1, v=concat(v, 1 + vecsum(WeighT(v)) - v[n])); v[1]=1; v} \\ Andrew Howroyd, Feb 09 2020

Extensions

Terms a(31) and beyond from Andrew Howroyd, Feb 09 2020
Showing 1-10 of 23 results. Next