cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A063895 Start with x, xy; then concatenate each word in turn with all preceding words, getting x xy xxy xxxy xyxxy xxxxy xyxxxy xxyxxxy ...; sequence gives number of words of length n. Also binary trees by degree: x (x,y) (x,(x,y)) (x,(x,(x,y))) ((x,y),(x,(x,y)))...

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 6, 11, 22, 43, 88, 179, 372, 774, 1631, 3448, 7347, 15713, 33791, 72923, 158021, 343495, 749102, 1638103, 3591724, 7893802, 17387931, 38379200, 84875596, 188036830, 417284181, 927469845, 2064465341, 4601670625, 10270463565, 22950838755
Offset: 1

Views

Author

Claude Lenormand (claude.lenormand(AT)free.fr), Aug 29 2001

Keywords

Comments

Also binary rooted identity trees (those with no symmetries, cf. A004111).
From Gus Wiseman, May 04 2021: (Start)
Also the number of unlabeled binary rooted semi-identity trees with 2*n - 1 nodes. In a semi-identity tree, only the non-leaf branches directly under any given vertex are required to be distinct. Alternatively, an unlabeled rooted tree is a semi-identity tree iff the non-leaf branches of the root are all distinct and are themselves semi-identity trees. For example, the a(3) = 1 through a(6) = 6 trees are:
(o(oo)) (o(o(oo))) ((oo)(o(oo))) ((oo)(o(o(oo)))) ((o(oo))(o(o(oo))))
(o(o(o(oo)))) (o((oo)(o(oo)))) ((oo)((oo)(o(oo))))
(o(o(o(o(oo))))) ((oo)(o(o(o(oo)))))
(o((oo)(o(o(oo)))))
(o(o((oo)(o(oo)))))
(o(o(o(o(o(oo))))))
The a(8) = 11 trees with 15 nodes:
((o(oo))((oo)(o(oo))))
((o(oo))(o(o(o(oo)))))
((oo)((oo)(o(o(oo)))))
((oo)(o((oo)(o(oo)))))
((oo)(o(o(o(o(oo))))))
(o((o(oo))(o(o(oo)))))
(o((oo)((oo)(o(oo)))))
(o((oo)(o(o(o(oo))))))
(o(o((oo)(o(o(oo))))))
(o(o(o((oo)(o(oo))))))
(o(o(o(o(o(o(oo)))))))
(End)

Crossrefs

The non-semi-identity version is 2*A001190(n)-1, ranked by A111299.
Semi-binary trees are also counted by A001190, but ranked by A292050.
The not necessarily binary version is A306200, ranked A306202.
The Matula-Goebel numbers of these trees are A339193.
The plane tree version is A343663.
A000081 counts unlabeled rooted trees with n nodes.
A004111 counts identity trees, ranked by A276625.
A306201 counts balanced semi-identity trees, ranked by A306203.
A331966 counts lone-child avoiding semi-identity trees, ranked by A331965.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, n*(3-n)/2, add(a(i)*a(n-i),
          i=1..(n-1)/2)+`if`(irem(n, 2, 'r')=0, (p->(p-1)*p/2)(a(r)), 0))
        end:
    seq(a(n), n=1..50);  # Alois P. Heinz, Aug 02 2013
  • Mathematica
    a[n_] := a[n] = If[n<3, n*(3-n)/2, Sum[a[i]*a[n-i], {i, 1, (n-1)/2}]+If[{q, r} = QuotientRemainder[n, 2]; r == 0, (a[q]-1)*a[q]/2, 0]]; Table[a[n], {n, 1, 36}] (* Jean-François Alcover, Feb 25 2014, after Alois P. Heinz *)
    ursiq[n_]:=Join@@Table[Select[Union[Sort/@Tuples[ursiq/@ptn]],#=={}||#=={{},{}}||Length[#]==2&&(UnsameQ@@DeleteCases[#,{}])&],{ptn,IntegerPartitions[n-1]}];Table[Length[ursiq[n]],{n,1,15,2}] (* Gus Wiseman, May 04 2021 *)
  • PARI
    {a(n)=local(A, m); if(n<1, 0, m=1; A=O(x); while( m<=n, m*=2; A=1-sqrt(1-2*x-2*x^2+subst(A, x, x^2))); polcoeff(A, n))}

Formula

a(n) = (sum a(i)*a(j), i+j=n, i2. a(1)=a(2)=1.
G.f. A(x) = 1-sqrt(1-2x-2x^2+A(x^2)) satisfies x+x^2-A(x)+(A(x)^2-A(x^2))/2=0, A(0)=0. - Michael Somos, Sep 06 2003
a(n) ~ c * d^n / n^(3/2), where d = 2.33141659246516873904600076533362924695..., c = 0.2873051160895040470174351963... . - Vaclav Kotesovec, Sep 11 2014

Extensions

Additional comments and g.f. from Christian G. Bower, Nov 29 2001

A050381 Number of series-reduced planted trees with n leaves of 2 colors.

Original entry on oeis.org

2, 3, 10, 40, 170, 785, 3770, 18805, 96180, 502381, 2667034, 14351775, 78096654, 429025553, 2376075922, 13252492311, 74372374366, 419651663108, 2379399524742, 13549601275893, 77460249369658, 444389519874841
Offset: 1

Views

Author

Christian G. Bower, Nov 15 1999

Keywords

Comments

Consider the free algebraic system with two commutative associative operators (x+y) and (x*y) and two generators A,B. The number of elements with n occurrences of the generators is 2*a(n) if n>1, and the number of generators if n=1. - Michael Somos, Aug 07 2017
From Gus Wiseman, Feb 07 2020: (Start)
Also the number of semi-lone-child-avoiding rooted trees with n leaves. Semi-lone-child-avoiding means there are no vertices with exactly one child unless that child is an endpoint/leaf. For example, the a(1) = 2 through a(3) = 10 trees are:
o (oo) (ooo)
(o) (o(o)) (o(oo))
((o)(o)) (oo(o))
((o)(oo))
(o(o)(o))
(o(o(o)))
((o)(o)(o))
((o)(o(o)))
(o((o)(o)))
((o)((o)(o)))
(End)

Examples

			For n=2, the 2*a(2) = 6 elements are: A+A, A+B, B+B, A*A, A*B, B*B. - _Michael Somos_, Aug 07 2017
		

Crossrefs

Column 2 of A319254.
Lone-child-avoiding rooted trees with n leaves are A000669.
Lone-child-avoiding rooted trees with n vertices are A001678.
The locally disjoint case is A331874.
Semi-lone-child-avoiding rooted trees with n vertices are A331934.
Matula-Goebel numbers of these trees are A331935.

Programs

  • Mathematica
    terms = 22;
    B[x_] = x O[x]^(terms+1);
    A[x_] = 1/(1 - x + B[x])^2;
    Do[A[x_] = A[x]/(1 - x^k + B[x])^Coefficient[A[x], x, k] + O[x]^(terms+1) // Normal, {k, 2, terms+1}];
    Join[{2}, Drop[CoefficientList[A[x], x]/2, 2]] (* Jean-François Alcover, Aug 17 2018, after Michael Somos *)
    slaurte[n_]:=If[n==1,{o,{o}},Join@@Table[Union[Sort/@Tuples[slaurte/@ptn]],{ptn,Rest[IntegerPartitions[n]]}]];
    Table[Length[slaurte[n]],{n,10}] (* Gus Wiseman, Feb 07 2020 *)
  • PARI
    {a(n) = my(A, B); if( n<2, 2*(n>0), B = x * O(x^n); A = 1 / (1 - x + B)^2; for(k=2, n, A /= (1 - x^k + B)^polcoeff(A, k)); polcoeff(A, n)/2)}; /* Michael Somos, Aug 07 2017 */

Formula

Doubles (index 2+) under EULER transform.
Product_{k>=1} (1-x^k)^-a(k) = 1 + a(1)*x + Sum_{k>=2} 2*a(k)*x^k. - Michael Somos, Aug 07 2017
a(n) ~ c * d^n / n^(3/2), where d = 6.158893517087396289837838459951206775682824030495453326610366016992093939... and c = 0.1914250508201011360729769525164141605187995730026600722369002... - Vaclav Kotesovec, Aug 17 2018

A331935 Matula-Goebel numbers of semi-lone-child-avoiding rooted trees.

Original entry on oeis.org

1, 2, 4, 6, 8, 9, 12, 14, 16, 18, 21, 24, 26, 27, 28, 32, 36, 38, 39, 42, 46, 48, 49, 52, 54, 56, 57, 63, 64, 69, 72, 74, 76, 78, 81, 84, 86, 91, 92, 96, 98, 104, 106, 108, 111, 112, 114, 117, 122, 126, 128, 129, 133, 138, 144, 146, 147, 148, 152, 156, 159
Offset: 1

Views

Author

Gus Wiseman, Feb 03 2020

Keywords

Comments

A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless the child is an endpoint/leaf.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
Consists of one, two, and all nonprime numbers whose prime indices already belong to the sequence, where a prime index of n is a number m such that prime(m) divides n.

Examples

			The sequence of all semi-lone-child-avoiding rooted trees together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   4: (oo)
   6: (o(o))
   8: (ooo)
   9: ((o)(o))
  12: (oo(o))
  14: (o(oo))
  16: (oooo)
  18: (o(o)(o))
  21: ((o)(oo))
  24: (ooo(o))
  26: (o(o(o)))
  27: ((o)(o)(o))
  28: (oo(oo))
  32: (ooooo)
  36: (oo(o)(o))
  38: (o(ooo))
  39: ((o)(o(o)))
  42: (o(o)(oo))
The sequence of terms together with their prime indices begins:
    1: {}              46: {1,9}             98: {1,4,4}
    2: {1}             48: {1,1,1,1,2}      104: {1,1,1,6}
    4: {1,1}           49: {4,4}            106: {1,16}
    6: {1,2}           52: {1,1,6}          108: {1,1,2,2,2}
    8: {1,1,1}         54: {1,2,2,2}        111: {2,12}
    9: {2,2}           56: {1,1,1,4}        112: {1,1,1,1,4}
   12: {1,1,2}         57: {2,8}            114: {1,2,8}
   14: {1,4}           63: {2,2,4}          117: {2,2,6}
   16: {1,1,1,1}       64: {1,1,1,1,1,1}    122: {1,18}
   18: {1,2,2}         69: {2,9}            126: {1,2,2,4}
   21: {2,4}           72: {1,1,1,2,2}      128: {1,1,1,1,1,1,1}
   24: {1,1,1,2}       74: {1,12}           129: {2,14}
   26: {1,6}           76: {1,1,8}          133: {4,8}
   27: {2,2,2}         78: {1,2,6}          138: {1,2,9}
   28: {1,1,4}         81: {2,2,2,2}        144: {1,1,1,1,2,2}
   32: {1,1,1,1,1}     84: {1,1,2,4}        146: {1,21}
   36: {1,1,2,2}       86: {1,14}           147: {2,4,4}
   38: {1,8}           91: {4,6}            148: {1,1,12}
   39: {2,6}           92: {1,1,9}          152: {1,1,1,8}
   42: {1,2,4}         96: {1,1,1,1,1,2}    156: {1,1,2,6}
		

Crossrefs

The enumeration of these trees by leaves is A050381.
The locally disjoint version A331873.
The enumeration of these trees by nodes is A331934.
The case with at most one distinct non-leaf branch of any vertex is A331936.
Lone-child-avoiding rooted trees are counted by A001678.
Matula-Goebel numbers of lone-child-avoiding rooted trees are A291636.

Programs

  • Mathematica
    mseQ[n_]:=n==1||n==2||!PrimeQ[n]&&And@@mseQ/@PrimePi/@First/@FactorInteger[n];
    Select[Range[100],mseQ]

A331873 Matula-Goebel numbers of semi-lone-child-avoiding locally disjoint rooted trees.

Original entry on oeis.org

1, 2, 4, 6, 8, 9, 12, 14, 16, 18, 24, 26, 27, 28, 32, 36, 38, 46, 48, 49, 52, 54, 56, 64, 69, 72, 74, 76, 81, 86, 92, 96, 98, 104, 106, 108, 112, 122, 128, 138, 144, 148, 152, 161, 162, 169, 172, 178, 184, 192, 196, 202, 206, 207, 208, 212, 214, 216, 224, 243
Offset: 1

Views

Author

Gus Wiseman, Feb 02 2020

Keywords

Comments

First differs from A331936 in having 69, the Matula-Goebel number of the tree ((o)((o)(o))).
A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless the child is an endpoint/leaf.
Locally disjoint means no child of any vertex has branches overlapping the branches of any other (inequivalent) child of the same vertex.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
Consists of one, two, and all nonprime numbers whose distinct prime indices are pairwise coprime and already belong to the sequence, where a singleton is always considered to be pairwise coprime. A prime index of n is a number m such that prime(m) divides n.

Examples

			The sequence of all semi-lone-child-avoiding locally disjoint rooted trees together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   4: (oo)
   6: (o(o))
   8: (ooo)
   9: ((o)(o))
  12: (oo(o))
  14: (o(oo))
  16: (oooo)
  18: (o(o)(o))
  24: (ooo(o))
  26: (o(o(o)))
  27: ((o)(o)(o))
  28: (oo(oo))
  32: (ooooo)
  36: (oo(o)(o))
  38: (o(ooo))
  46: (o((o)(o)))
  48: (oooo(o))
  49: ((oo)(oo))
		

Crossrefs

Not requiring lone-child-avoidance gives A316495.
A superset of A320269.
The semi-identity tree case is A331681.
The non-semi version (i.e., not containing 2) is A331871.
These trees counted by vertices are A331872.
These trees counted by leaves are A331874.
Not requiring local disjointness gives A331935.
The identity tree case is A331937.

Programs

  • Mathematica
    msQ[n_]:=n==1||n==2||!PrimeQ[n]&&(PrimePowerQ[n]||CoprimeQ@@PrimePi/@First/@FactorInteger[n])&&And@@msQ/@PrimePi/@First/@FactorInteger[n];
    Select[Range[100],msQ]

A198518 G.f. satisfies: A(x) = exp( Sum_{n>=1} A(x^n)/(1+x^n) * x^n/n ).

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 9, 16, 29, 54, 102, 194, 375, 730, 1434, 2837, 5650, 11311, 22767, 46023, 93422, 190322, 389037, 797613, 1639878, 3380099, 6983484, 14459570, 29999618, 62357426, 129843590, 270807835, 565674584, 1183301266, 2478624060, 5198504694, 10916110768, 22948299899
Offset: 0

Views

Author

Paul D. Hanna, Oct 26 2011

Keywords

Comments

For n>=1, a(n) is the number of rooted trees (see A000081) with n non-root nodes where non-root nodes cannot have out-degree 1, see the note by David Callan and the example. Imposing the condition also for the root node gives A001678. - Joerg Arndt, Jun 28 2014
Compare definition to G(x) = exp( Sum_{n>=1} G(x^n)*x^n/n ), where G(x) is the g.f. of A000081, the number of rooted trees with n nodes.
Number of forests of lone-child-avoiding rooted trees with n unlabeled vertices. - Gus Wiseman, Feb 03 2020

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 5*x^5 + 9*x^6 + 16*x^7 + 29*x^8 +...
where
log(A(x)) = A(x)/(1+x)*x + A(x^2)/(1+x^2)*x^2/2 + A(x^3)/(1+x^3)*x^3/3 +...
The coefficients in A(x)/(1+x) begin:
[1, 0, 1, 1, 2, 3, 6, 10, 19, 35, 67, 127, 248, 482, 952, 1885, 3765, ...]
(this is, up to offset, A001678),
from which g.f. A(x) may be generated by the Euler transform:
A(x) = 1/((1-x)^1*(1-x^2)^0*(1-x^3)^1*(1-x^4)^1*(1-x^5)^2*(1-x^6)^3*(1-x^7)^6*(1-x^8)^10*(1-x^9)^19*(1-x^10)^35*...).
From _Joerg Arndt_, Jun 28 2014: (Start)
The a(6) = 9 rooted trees with 6 non-root nodes as described in the comment are:
:           level sequence       out-degrees (dots for zeros)
:     1:  [ 0 1 2 3 3 3 2 ]    [ 1 2 3 . . . . ]
:  O--o--o--o
:        .--o
:        .--o
:     .--o
:
:     2:  [ 0 1 2 3 3 2 2 ]    [ 1 3 2 . . . . ]
:  O--o--o--o
:        .--o
:     .--o
:     .--o
:
:     3:  [ 0 1 2 3 3 2 1 ]    [ 2 2 2 . . . . ]
:  O--o--o--o
:        .--o
:     .--o
:  .--o
:
:     4:  [ 0 1 2 2 2 2 2 ]    [ 1 5 . . . . . ]
:  O--o--o
:     .--o
:     .--o
:     .--o
:     .--o
:
:     5:  [ 0 1 2 2 2 2 1 ]    [ 2 4 . . . . . ]
:  O--o--o
:     .--o
:     .--o
:     .--o
:  .--o
:
:     6:  [ 0 1 2 2 2 1 1 ]    [ 3 3 . . . . . ]
:  O--o--o
:     .--o
:     .--o
:  .--o
:  .--o
:
:     7:  [ 0 1 2 2 1 2 2 ]    [ 2 2 . . 2 . . ]
:  O--o--o
:     .--o
:  .--o--o
:     .--o
:
:     8:  [ 0 1 2 2 1 1 1 ]    [ 4 2 . . . . . ]
:  O--o--o
:     .--o
:  .--o
:  .--o
:  .--o
:
:     9:  [ 0 1 1 1 1 1 1 ]    [ 6 . . . . . . ]
:  O--o
:  .--o
:  .--o
:  .--o
:  .--o
:  .--o
(End)
From _Gus Wiseman_, Jan 22 2020: (Start)
The a(0) = 1 through a(6) = 9 rooted trees with n + 1 nodes where non-root vertices cannot have out-degree 1:
  o  (o)  (oo)  (ooo)   (oooo)   (ooooo)    (oooooo)
                ((oo))  ((ooo))  ((oooo))   ((ooooo))
                        (o(oo))  (o(ooo))   (o(oooo))
                                 (oo(oo))   (oo(ooo))
                                 ((o(oo)))  (ooo(oo))
                                            ((o(ooo)))
                                            ((oo)(oo))
                                            ((oo(oo)))
                                            (o(o(oo)))
(End)
		

Crossrefs

The labeled version is A254382.
Unlabeled rooted trees are A000081.
Lone-child-avoiding rooted trees are A001678(n+1).
Topologically series-reduced rooted trees are A001679.
Labeled lone-child-avoiding rooted trees are A060356.

Programs

  • Maple
    with(numtheory):
    b:= proc(n) b(n):= `if`(n=0, 1, a(n)-b(n-1)) end:
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
           d*b(d-1), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Jul 02 2014
  • Mathematica
    b[n_] := b[n] = If[n==0, 1, a[n] - b[n-1]];
    a[n_] := a[n] = If[n==0, 1, Sum[Sum[d*b[d-1], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n];
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Mar 21 2017, after Alois P. Heinz *)
    urt[n_]:=Join@@Table[Union[Sort/@Tuples[urt/@ptn]],{ptn,IntegerPartitions[n-1]}];
    Table[Length[Select[urt[n],FreeQ[Z@@#,{}]&]],{n,10}] (* _Gus Wiseman, Jan 22 2020 *)
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1,n,subst(A/(1+x),x,x^m+x*O(x^n))*x^m/m)));polcoeff(A,n)}

Formula

Euler transform of coefficients in A(x)/(1+x), where g.f. A(x) = Sum_{n>=0} a(n)*x^n.
a(n) ~ c * d^n / n^(3/2), where d = A246403 = 2.18946198566085056388702757711..., c = 1.3437262442171062526771597... . - Vaclav Kotesovec, Sep 03 2014
a(n) = A001678(n + 1) + A001678(n + 2). - Gus Wiseman, Jan 22 2020
Euler transform of A001678(n + 1). - Gus Wiseman, Feb 03 2020

A331936 Matula-Goebel numbers of semi-lone-child-avoiding rooted trees with at most one distinct non-leaf branch directly under any vertex (semi-achirality).

Original entry on oeis.org

1, 2, 4, 6, 8, 9, 12, 14, 16, 18, 24, 26, 27, 28, 32, 36, 38, 46, 48, 49, 52, 54, 56, 64, 72, 74, 76, 81, 86, 92, 96, 98, 104, 106, 108, 112, 122, 128, 144, 148, 152, 162, 169, 172, 178, 184, 192, 196, 202, 206, 208, 212, 214, 216, 224, 243, 244, 256, 262, 288
Offset: 1

Views

Author

Gus Wiseman, Feb 03 2020

Keywords

Comments

First differs from A331873 in lacking 69, the Matula-Goebel number of the tree ((o)((o)(o))).
A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless that child is an endpoint/leaf.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
Consists of 1, 2, and all numbers equal to a power of 2 (other than 1) times a power of prime(j) for some j > 1 already in the sequence.

Examples

			The sequence of rooted trees ranked by this sequence together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   4: (oo)
   6: (o(o))
   8: (ooo)
   9: ((o)(o))
  12: (oo(o))
  14: (o(oo))
  16: (oooo)
  18: (o(o)(o))
  24: (ooo(o))
  26: (o(o(o)))
  27: ((o)(o)(o))
  28: (oo(oo))
  32: (ooooo)
  36: (oo(o)(o))
  38: (o(ooo))
  46: (o((o)(o)))
  48: (oooo(o))
  49: ((oo)(oo))
The sequence of terms together with their prime indices begins:
    1: {}              52: {1,1,6}            152: {1,1,1,8}
    2: {1}             54: {1,2,2,2}          162: {1,2,2,2,2}
    4: {1,1}           56: {1,1,1,4}          169: {6,6}
    6: {1,2}           64: {1,1,1,1,1,1}      172: {1,1,14}
    8: {1,1,1}         72: {1,1,1,2,2}        178: {1,24}
    9: {2,2}           74: {1,12}             184: {1,1,1,9}
   12: {1,1,2}         76: {1,1,8}            192: {1,1,1,1,1,1,2}
   14: {1,4}           81: {2,2,2,2}          196: {1,1,4,4}
   16: {1,1,1,1}       86: {1,14}             202: {1,26}
   18: {1,2,2}         92: {1,1,9}            206: {1,27}
   24: {1,1,1,2}       96: {1,1,1,1,1,2}      208: {1,1,1,1,6}
   26: {1,6}           98: {1,4,4}            212: {1,1,16}
   27: {2,2,2}        104: {1,1,1,6}          214: {1,28}
   28: {1,1,4}        106: {1,16}             216: {1,1,1,2,2,2}
   32: {1,1,1,1,1}    108: {1,1,2,2,2}        224: {1,1,1,1,1,4}
   36: {1,1,2,2}      112: {1,1,1,1,4}        243: {2,2,2,2,2}
   38: {1,8}          122: {1,18}             244: {1,1,18}
   46: {1,9}          128: {1,1,1,1,1,1,1}    256: {1,1,1,1,1,1,1,1}
   48: {1,1,1,1,2}    144: {1,1,1,1,2,2}      262: {1,32}
   49: {4,4}          148: {1,1,12}           288: {1,1,1,1,1,2,2}
		

Crossrefs

A superset of A000079.
The non-lone-child-avoiding version is A320230.
The non-semi version is A320269.
These trees are counted by A331933.
Not requiring semi-achirality gives A331935.
The fully-achiral case is A331992.
Achiral trees are counted by A003238.
Numbers with at most one distinct odd prime factor are A070776.
Matula-Goebel numbers of achiral rooted trees are A214577.
Matula-Goebel numbers of semi-identity trees are A306202.
Numbers S with at most one distinct prime index in S are A331912.

Programs

  • Mathematica
    msQ[n_]:=n<=2||!PrimeQ[n]&&Length[DeleteCases[FactorInteger[n],{2,_}]]<=1&&And@@msQ/@PrimePi/@First/@FactorInteger[n];
    Select[Range[100],msQ]

Formula

Intersection of A320230 and A331935.

A331963 Matula-Goebel numbers of semi-lone-child-avoiding rooted identity trees.

Original entry on oeis.org

1, 2, 6, 26, 39, 78, 202, 303, 334, 501, 606, 794, 1002, 1191, 1313, 2171, 2382, 2462, 2626, 3693, 3939, 3998, 4342, 4486, 5161, 5997, 6513, 6729, 7162, 7386, 7878, 8914, 10322, 10743, 11994, 12178, 13026, 13371, 13458, 15483, 15866, 16003, 16867, 18267, 19286
Offset: 1

Views

Author

Gus Wiseman, Feb 03 2020

Keywords

Comments

A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless the child is an endpoint/leaf. It is an identity tree if the branches under any given vertex are all distinct.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
Consists of one, two, and all nonprime squarefree numbers whose prime indices already belong to the sequence, where a prime index of n is a number m such that prime(m) divides n.

Examples

			The sequence of all semi-lone-child-avoiding rooted identity trees together with their Matula-Goebel numbers begins:
    1: o
    2: (o)
    6: (o(o))
   26: (o(o(o)))
   39: ((o)(o(o)))
   78: (o(o)(o(o)))
  202: (o(o(o(o))))
  303: ((o)(o(o(o))))
  334: (o((o)(o(o))))
  501: ((o)((o)(o(o))))
  606: (o(o)(o(o(o))))
  794: (o(o(o)(o(o))))
		

Crossrefs

A subset of A276625 (MG-numbers of identity trees).
Not requiring an identity tree gives A331935.
The locally disjoint version is A331937.
These trees are counted by A331964.
The semi-identity case is A331994.
Matula-Goebel numbers of identity trees are A276625.
Matula-Goebel numbers of lone-child-avoiding rooted semi-identity trees are A331965.

Programs

  • Mathematica
    msiQ[n_]:=n==1||n==2||!PrimeQ[n]&&SquareFreeQ[n]&&And@@msiQ/@PrimePi/@First/@FactorInteger[n];
    Select[Range[1000],msiQ]

Formula

Intersection of A276625 (identity trees) and A331935 (semi-lone-child-avoiding).

A331964 Number of semi-lone-child-avoiding rooted identity trees with n vertices.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 1, 2, 2, 4, 6, 10, 16, 27, 44, 74, 123, 209, 353, 602, 1026, 1760, 3019, 5203, 8977, 15538, 26930, 46792, 81415, 141939, 247795, 433307, 758672, 1330219, 2335086, 4104064, 7220937, 12718694, 22424283, 39574443, 69903759, 123584852, 218668323
Offset: 1

Views

Author

Gus Wiseman, Feb 04 2020

Keywords

Comments

A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless that child is an endpoint/leaf. It is an identity tree if the branches of any given vertex are all distinct.

Examples

			The a(9) = 2 through a(12) = 10 semi-lone-child-avoiding rooted identity trees:
  ((o)(o(o(o))))  (o(o)(o(o(o))))   ((o)(o(o)(o(o))))  (o(o)(o(o)(o(o))))
  (o((o)(o(o))))  (o(o(o)(o(o))))   ((o)(o(o(o(o)))))  (o(o)(o(o(o(o)))))
                  (o(o(o(o(o)))))   ((o(o))(o(o(o))))  (o(o(o))(o(o(o))))
                  ((o)((o)(o(o))))  (o((o)(o(o(o)))))  (o(o(o)(o(o(o)))))
                                    (o(o)((o)(o(o))))  (o(o(o(o)(o(o)))))
                                    (o(o((o)(o(o)))))  (o(o(o(o(o(o))))))
                                                       ((o)((o)(o(o(o)))))
                                                       ((o)(o((o)(o(o)))))
                                                       ((o(o))((o)(o(o))))
                                                       (o((o)((o)(o(o)))))
		

Crossrefs

The non-semi version is A000007.
Matula-Goebel numbers of these trees are A331963.
Rooted identity trees are A004111.
Semi-lone-child-avoiding rooted trees are A331934.

Programs

  • Mathematica
    ssei[n_]:=Switch[n,1,{{}},2,{{{}}},_,Join@@Function[c,Select[Union[Sort/@Tuples[ssei/@c]],UnsameQ@@#&]]/@Rest[IntegerPartitions[n-1]]];
    Table[Length[ssei[n]],{n,15}]
  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
    seq(n)={my(v=[1,1]); for(n=2, n-1, v=concat(v, WeighT(v)[n] - v[n])); v} \\ Andrew Howroyd, Feb 09 2020

Extensions

Terms a(36) and beyond from Andrew Howroyd, Feb 09 2020

A331872 Number of semi-lone-child-avoiding locally disjoint rooted trees with n vertices.

Original entry on oeis.org

1, 1, 1, 2, 4, 6, 12, 19, 35, 59, 104, 179, 318, 556, 993, 1772, 3202, 5807, 10643, 19594, 36380, 67915
Offset: 1

Views

Author

Gus Wiseman, Feb 02 2020

Keywords

Comments

A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless the child is an endpoint/leaf.
Locally disjoint means no child of any vertex has branches overlapping the branches of any other (inequivalent) child of the same vertex.

Examples

			The a(1) = 1 through a(8) = 19 trees:
  o  (o)  (oo)  (ooo)   (oooo)    (ooooo)    (oooooo)     (ooooooo)
                (o(o))  (o(oo))   (o(ooo))   (o(oooo))    (o(ooooo))
                        (oo(o))   (oo(oo))   (oo(ooo))    (oo(oooo))
                        ((o)(o))  (ooo(o))   (ooo(oo))    (ooo(ooo))
                                  (o(o)(o))  (oooo(o))    (oooo(oo))
                                  (o(o(o)))  ((oo)(oo))   (ooooo(o))
                                             (o(o(oo)))   (o(o(ooo)))
                                             (o(oo(o)))   (o(oo)(oo))
                                             (oo(o)(o))   (o(oo(oo)))
                                             (oo(o(o)))   (o(ooo(o)))
                                             ((o)(o)(o))  (oo(o(oo)))
                                             (o((o)(o)))  (oo(oo(o)))
                                                          (ooo(o)(o))
                                                          (ooo(o(o)))
                                                          (o(o)(o)(o))
                                                          (o(o(o)(o)))
                                                          (o(o(o(o))))
                                                          (oo((o)(o)))
                                                          ((o)((o)(o)))
		

Crossrefs

Not requiring lone-child-avoidance gives A316473.
The non-semi version is A331680.
The Matula-Goebel numbers of these trees are A331873.
The same trees counted by number of leaves are A331874.
Not requiring local disjointness gives A331934.
Lone-child-avoiding rooted trees are A001678.

Programs

  • Mathematica
    disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
    strutsemi[n_]:=If[n==1,{{}},If[n==2,{{{}}},Select[Join@@Function[c,Union[Sort/@Tuples[strutsemi/@c]]]/@Rest[IntegerPartitions[n-1]],disjointQ]]];
    Table[Length[strutsemi[n]],{n,8}]

A331874 Number of semi-lone-child-avoiding locally disjoint rooted trees with n unlabeled leaves.

Original entry on oeis.org

2, 3, 8, 24, 67, 214, 687, 2406, 8672, 32641, 125431, 493039, 1964611
Offset: 1

Views

Author

Gus Wiseman, Feb 02 2020

Keywords

Comments

A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless the child is an endpoint/leaf.
Locally disjoint means no child of any vertex has branches overlapping the branches of any other (inequivalent) child of the same vertex.

Examples

			The a(1) = 2 through a(4) = 24 trees:
  o    (oo)      (ooo)          (oooo)
  (o)  (o(o))    (o(oo))        (o(ooo))
       ((o)(o))  (oo(o))        (oo(oo))
                 (o(o)(o))      (ooo(o))
                 (o(o(o)))      ((oo)(oo))
                 ((o)(o)(o))    (o(o(oo)))
                 (o((o)(o)))    (o(oo(o)))
                 ((o)((o)(o)))  (oo(o)(o))
                                (oo(o(o)))
                                (o(o)(o)(o))
                                (o(o(o)(o)))
                                (o(o(o(o))))
                                (oo((o)(o)))
                                ((o)(o)(o)(o))
                                ((o(o))(o(o)))
                                ((oo)((o)(o)))
                                (o((o)(o)(o)))
                                (o(o)((o)(o)))
                                (o(o((o)(o))))
                                ((o)((o)(o)(o)))
                                ((o)(o)((o)(o)))
                                (o((o)((o)(o))))
                                (((o)(o))((o)(o)))
                                ((o)((o)((o)(o))))
		

Crossrefs

Not requiring local disjointness gives A050381.
The non-semi version is A316697.
The same trees counted by number of vertices are A331872.
The Matula-Goebel numbers of these trees are A331873.
Lone-child-avoiding rooted trees counted by leaves are A000669.
Semi-lone-child-avoiding rooted trees counted by vertices are A331934.

Programs

  • Mathematica
    disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
    slaurt[n_]:=If[n==1,{o,{o}},Join@@Table[Select[Union[Sort/@Tuples[slaurt/@ptn]],disjointQ[Select[#,!AtomQ[#]&]]&],{ptn,Rest[IntegerPartitions[n]]}]];
    Table[Length[slaurt[n]],{n,8}]
Showing 1-10 of 18 results. Next