cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A126120 Catalan numbers (A000108) interpolated with 0's.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, 0, 132, 0, 429, 0, 1430, 0, 4862, 0, 16796, 0, 58786, 0, 208012, 0, 742900, 0, 2674440, 0, 9694845, 0, 35357670, 0, 129644790, 0, 477638700, 0, 1767263190, 0, 6564120420, 0, 24466267020, 0, 91482563640, 0, 343059613650, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 06 2007

Keywords

Comments

Inverse binomial transform of A001006.
The Hankel transform of this sequence gives A000012 = [1,1,1,1,1,...].
Counts returning walks (excursions) of length n on a 1-d integer lattice with step set {+1,-1} which stay in the chamber x >= 0. - Andrew V. Sutherland, Feb 29 2008
Moment sequence of the trace of a random matrix in G=USp(2)=SU(2). If X=tr(A) is a random variable (A distributed according to the Haar measure on G) then a(n) = E[X^n]. - Andrew V. Sutherland, Feb 29 2008
Essentially the same as A097331. - R. J. Mathar, Jun 15 2008
Number of distinct proper binary trees with n nodes. - Chris R. Sims (chris.r.sims(AT)gmail.com), Jun 30 2010
-a(n-1), with a(-1):=0, n>=0, is the Z-sequence for the Riordan array A049310 (Chebyshev S). For the definition see that triangle. - Wolfdieter Lang, Nov 04 2011
See A180874 (also A238390 and A097610) and A263916 for relations to the general Bell A036040, cycle index A036039, and cumulant expansion polynomials A127671 through the Faber polynomials. - Tom Copeland, Jan 26 2016
A signed version is generated by evaluating polynomials in A126216 that are essentially the face polynomials of the associahedra. This entry's sequence is related to an inversion relation on p. 34 of Mizera, related to Feynman diagrams. - Tom Copeland, Dec 09 2019

Examples

			G.f. = 1 + x^2 + 2*x^4 + 5*x^6 + 14*x^8 + 42*x^10 + 132*x^12 + 429*x^14 + ...
From _Gus Wiseman_, Nov 14 2022: (Start)
The a(0) = 1 through a(8) = 14 ordered binary rooted trees with n + 1 nodes (ranked by A358375):
  o  .  (oo)  .  ((oo)o)  .  (((oo)o)o)  .  ((((oo)o)o)o)
                 (o(oo))     ((o(oo))o)     (((o(oo))o)o)
                             ((oo)(oo))     (((oo)(oo))o)
                             (o((oo)o))     (((oo)o)(oo))
                             (o(o(oo)))     ((o((oo)o))o)
                                            ((o(o(oo)))o)
                                            ((o(oo))(oo))
                                            ((oo)((oo)o))
                                            ((oo)(o(oo)))
                                            (o(((oo)o)o))
                                            (o((o(oo))o))
                                            (o((oo)(oo)))
                                            (o(o((oo)o)))
                                            (o(o(o(oo))))
(End)
		

References

  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Ch. 49, Hemisphere Publishing Corp., 1987.

Crossrefs

Cf. A126216.
The unordered version is A001190, ranked by A111299.
These trees (ordered binary rooted) are ranked by A358375.

Programs

  • Magma
    &cat [[Catalan(n), 0]: n in [0..30]]; // Vincenzo Librandi, Jul 28 2016
    
  • Maple
    with(combstruct): grammar := { BB = Sequence(Prod(a,BB,b)), a = Atom, b = Atom }: seq(count([BB,grammar], size=n),n=0..47); # Zerinvary Lajos, Apr 25 2007
    BB := {E=Prod(Z,Z), S=Union(Epsilon,Prod(S,S,E))}: ZL:=[S,BB,unlabeled]: seq(count(ZL, size=n), n=0..45); # Zerinvary Lajos, Apr 22 2007
    BB := [T,{T=Prod(Z,Z,Z,F,F), F=Sequence(B), B=Prod(F,Z,Z)}, unlabeled]: seq(count(BB, size=n+1), n=0..45); # valid for n> 0. # Zerinvary Lajos, Apr 22 2007
    seq(n!*coeff(series(hypergeom([],[2],x^2),x,n+2),x,n),n=0..45); # Peter Luschny, Jan 31 2015
    # Using function CompInv from A357588.
    CompInv(48, n -> ifelse(irem(n, 2) = 0, 0, (-1)^iquo(n-1, 2))); # Peter Luschny, Oct 07 2022
  • Mathematica
    a[n_?EvenQ] := CatalanNumber[n/2]; a[n_] = 0; Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Sep 10 2012 *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ BesselI[ 1, 2 x] / x, {x, 0, n}]]; (* Michael Somos, Mar 19 2014 *)
    bot[n_]:=If[n==1,{{}},Join@@Table[Tuples[bot/@c],{c,Table[{k,n-k-1},{k,n-1}]}]];
    Table[Length[bot[n]],{n,10}] (* Gus Wiseman, Nov 14 2022 *)
    Riffle[CatalanNumber[Range[0,50]],0,{2,-1,2}] (* Harvey P. Dale, May 28 2024 *)
  • Python
    from math import comb
    def A126120(n): return 0 if n&1 else comb(n,m:=n>>1)//(m+1) # Chai Wah Wu, Apr 22 2024
  • Sage
    def A126120_list(n) :
        D = [0]*(n+2); D[1] = 1
        b = True; h = 2; R = []
        for i in range(2*n-1) :
            if b :
                for k in range(h,0,-1) : D[k] -= D[k-1]
                h += 1; R.append(abs(D[1]))
            else :
                for k in range(1,h, 1) : D[k] += D[k+1]
            b = not b
        return R
    A126120_list(46) # Peter Luschny, Jun 03 2012
    

Formula

a(2*n) = A000108(n), a(2*n+1) = 0.
a(n) = A053121(n,0).
(1/Pi) Integral_{0 .. Pi} (2*cos(x))^n *2*sin^2(x) dx. - Andrew V. Sutherland, Feb 29 2008
G.f.: (1 - sqrt(1 - 4*x^2)) / (2*x^2) = 1/(1-x^2/(1-x^2/(1-x^2/(1-x^2/(1-... (continued fraction). - Philippe Deléham, Nov 24 2009
G.f. A(x) satisfies A(x) = 1 + x^2*A(x)^2. - Vladimir Kruchinin, Feb 18 2011
E.g.f.: I_1(2x)/x Where I_n(x) is the modified Bessel function. - Benjamin Phillabaum, Mar 07 2011
Apart from the first term the e.g.f. is given by x*HyperGeom([1/2],[3/2,2], x^2). - Benjamin Phillabaum, Mar 07 2011
a(n) = Integral_{x=-2..2} x^n*sqrt((2-x)*(2+x))/(2*Pi) dx. - Peter Luschny, Sep 11 2011
E.g.f.: E(0)/(1-x) where E(k) = 1-x/(1-x/(x-(k+1)*(k+2)/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 05 2013
G.f.: 3/2- sqrt(1-4*x^2)/2 = 1/x^2 + R(0)/x^2, where R(k) = 2*k-1 - x^2*(2*k-1)*(2*k+1)/R(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 28 2013 (warning: this is not the g.f. of this sequence, R. J. Mathar, Sep 23 2021)
G.f.: 1/Q(0), where Q(k) = 2*k+1 + x^2*(1-4*(k+1)^2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Jan 09 2014
a(n) = n!*[x^n]hypergeom([],[2],x^2). - Peter Luschny, Jan 31 2015
a(n) = 2^n*hypergeom([3/2,-n],[3],2). - Peter Luschny, Feb 03 2015
a(n) = ((-1)^n+1)*2^(2*floor(n/2)-1)*Gamma(floor(n/2)+1/2)/(sqrt(Pi)* Gamma(floor(n/2)+2)). - Ilya Gutkovskiy, Jul 23 2016
D-finite with recurrence (n+2)*a(n) +4*(-n+1)*a(n-2)=0. - R. J. Mathar, Mar 21 2021
From Peter Bala, Feb 03 2024: (Start)
a(n) = 2^n * Sum_{k = 0..n} (-2)^(-k)*binomial(n, k)*Catalan(k+1).
G.f.: 1/(1 + 2*x) * c(x/(1 + 2*x))^2 = 1/(1 - 2*x) * c(-x/(1 - 2*x))^2 = c(x^2), where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. (End)

Extensions

An erroneous comment removed by Tom Copeland, Jul 23 2016

A111299 Numbers whose Matula tree is a binary tree (i.e., root has degree 2 and all nodes except root and leaves have degree 3).

Original entry on oeis.org

4, 14, 49, 86, 301, 454, 886, 1589, 1849, 3101, 3986, 6418, 9761, 13766, 13951, 19049, 22463, 26798, 31754, 48181, 51529, 57026, 75266, 85699, 93793, 100561, 111139, 128074, 137987, 196249, 199591, 203878, 263431, 295969, 298154, 302426, 426058, 448259, 452411
Offset: 1

Views

Author

Keith Briggs, Nov 02 2005

Keywords

Comments

This sequence should probably start with 1. Then a number k is in the sequence iff k = 1 or k = prime(x) * prime(y) with x and y already in the sequence. - Gus Wiseman, May 04 2021

Examples

			From _Gus Wiseman_, May 04 2021: (Start)
The sequence of trees (starting with 1) begins:
     1: o
     4: (oo)
    14: (o(oo))
    49: ((oo)(oo))
    86: (o(o(oo)))
   301: ((oo)(o(oo)))
   454: (o((oo)(oo)))
   886: (o(o(o(oo))))
  1589: ((oo)((oo)(oo)))
  1849: ((o(oo))(o(oo)))
  3101: ((oo)(o(o(oo))))
  3986: (o((oo)(o(oo))))
  6418: (o(o((oo)(oo))))
  9761: ((o(oo))((oo)(oo)))
(End)
		

Crossrefs

Cf. A245824 (by number of leaves).
These trees are counted by 2*A001190 - 1.
The semi-binary version is A292050 (counted by A001190).
The semi-identity case is A339193 (counted by A063895).
A000081 counts unlabeled rooted trees with n nodes.
A007097 ranks rooted chains.
A276625 ranks identity trees, counted by A004111.
A306202 ranks semi-identity trees, counted by A306200.
A306203 ranks balanced semi-identity trees, counted by A306201.
A331965 ranks lone-child avoiding semi-identity trees, counted by A331966.

Programs

  • Mathematica
    nn=20000;
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    binQ[n_]:=Or[n===1,With[{m=primeMS[n]},And[Length[m]===2,And@@binQ/@m]]];
    Select[Range[2,nn],binQ] (* Gus Wiseman, Aug 28 2017 *)
  • PARI
    i(n)=n==2 || is(primepi(n))
    is(n)=if(n<14,return(n==4)); my(f=factor(n),t=#f[,1]); if(t>1, t==2 && f[1,2]==1 && f[2,2]==1 && i(f[1,1]) && i(f[2,1]), f[1,2]==2 && i(f[1,1])) \\ Charles R Greathouse IV, Mar 29 2013
    
  • PARI
    list(lim)=my(v=List(), t); forprime(p=2, sqrt(lim), t=p; forprime(q=p, lim\t, if(i(p)&&i(q), listput(v, t*q)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Mar 29 2013
    
  • PARI
    \\ Also see links.

Formula

The Matula tree of k is defined as follows:
matula(k):
create a node labeled k
for each prime factor m of k:
add the subtree matula(prime(m)), by an edge labeled m
return the node

Extensions

Definition corrected by Charles R Greathouse IV, Mar 29 2013
a(27)-a(39) from Charles R Greathouse IV, Mar 29 2013

A358371 Number of leaves in the n-th standard ordered rooted tree.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 3, 2, 2, 2, 3, 2, 3, 3, 4, 1, 3, 2, 3, 2, 3, 3, 4, 3, 3, 3, 4, 3, 4, 4, 5, 2, 2, 3, 4, 2, 3, 3, 4, 3, 3, 3, 4, 3, 4, 4, 5, 2, 4, 3, 4, 3, 4, 4, 5, 4, 4, 4, 5, 4, 5, 5, 6, 2, 3, 2, 3, 3, 4, 4, 5, 3, 3, 3, 4, 3, 4, 4, 5, 2, 4, 3, 4, 3, 4
Offset: 1

Views

Author

Gus Wiseman, Nov 13 2022

Keywords

Comments

We define the n-th standard ordered rooted tree to be obtained by taking the (n-1)-th composition in standard order (graded reverse-lexicographic, A066099) as root and replacing each part with its own standard ordered rooted tree. This ranking is an ordered variation of Matula-Goebel numbers, giving a bijective correspondence between positive integers and unlabeled ordered rooted trees.

Examples

			The standard ordered rooted tree ranking begins:
  1: o        10: (((o))o)   19: (((o))(o))
  2: (o)      11: ((o)(o))   20: (((o))oo)
  3: ((o))    12: ((o)oo)    21: ((o)((o)))
  4: (oo)     13: (o((o)))   22: ((o)(o)o)
  5: (((o)))  14: (o(o)o)    23: ((o)o(o))
  6: ((o)o)   15: (oo(o))    24: ((o)ooo)
  7: (o(o))   16: (oooo)     25: (o(oo))
  8: (ooo)    17: ((((o))))  26: (o((o))o)
  9: ((oo))   18: ((oo)o)    27: (o(o)(o))
For example, the 25th ordered tree is (o,(o,o)) because the 24th composition is (1,4) and the 3rd composition is (1,1). Hence a(25) = 3.
		

Crossrefs

The triangle counting trees by this statistic is A001263, unordered A055277.
The version for unordered trees is A109129, nodes A061775, edges A196050.
The nodes are counted by A358372.
A000081 counts unordered rooted trees, ranked by A358378.
A000108 counts ordered rooted trees.
A358374 ranks ordered identity trees, counted by A032027.
A358375 ranks ordered binary trees, counted by A126120

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    srt[n_]:=If[n==1,{},srt/@stc[n-1]];
    Table[Count[srt[n],{},{0,Infinity}],{n,100}]

A358372 Number of nodes in the n-th standard ordered rooted tree.

Original entry on oeis.org

1, 2, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 7, 7, 6, 6, 7, 7, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 7, 7, 5, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 7, 7, 8, 8, 8, 8, 8
Offset: 1

Views

Author

Gus Wiseman, Nov 14 2022

Keywords

Comments

We define the n-th standard ordered rooted tree to be obtained by taking the (n-1)-th composition in standard order (graded reverse-lexicographic, A066099) as root and replacing each part with its own standard ordered rooted tree. This ranking is an ordered variation of Matula-Goebel numbers, giving a bijective correspondence between positive integers and unlabeled ordered rooted trees.

Examples

			The standard ordered rooted tree ranking begins:
  1: o        10: (((o))o)   19: (((o))(o))
  2: (o)      11: ((o)(o))   20: (((o))oo)
  3: ((o))    12: ((o)oo)    21: ((o)((o)))
  4: (oo)     13: (o((o)))   22: ((o)(o)o)
  5: (((o)))  14: (o(o)o)    23: ((o)o(o))
  6: ((o)o)   15: (oo(o))    24: ((o)ooo)
  7: (o(o))   16: (oooo)     25: (o(oo))
  8: (ooo)    17: ((((o))))  26: (o((o))o)
  9: ((oo))   18: ((oo)o)    27: (o(o)(o))
For example, the 25th ordered tree is (o,(o,o)) because the 24th composition is (1,4) and the 3rd composition is (1,1). Hence a(25) = 5.
		

Crossrefs

The triangle counting trees by leaves is A001263, unordered A055277.
The version for unordered trees is A061775, leaves A109129, edges A196050.
The leaves are counted by A358371.
A000081 counts unlabeled rooted trees, ranked by A358378.
A358374 ranks ordered identity trees, counted by A032027.
A358375 ranks ordered binary trees, counted by A126120

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    srt[n_]:=If[n==1,{},srt/@stc[n-1]];
    Table[Count[srt[n],_,{0,Infinity}],{n,100}]

A358377 Numbers k such that the k-th standard ordered rooted tree is a generalized Bethe tree (counted by A003238).

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 9, 11, 16, 17, 32, 37, 43, 64, 128, 129, 137, 171, 256, 257, 293, 512, 529, 683, 1024, 1025, 2048, 2185, 2341, 2731, 4096, 8192, 10923, 16384, 16913, 18725, 32768, 32769, 32897, 34953, 43691, 65536, 65537, 131072, 131329, 149797, 174763
Offset: 1

Views

Author

Gus Wiseman, Nov 14 2022

Keywords

Comments

We define the n-th standard ordered rooted tree to be obtained by taking the (n-1)-th composition in standard order (graded reverse-lexicographic, A066099) as root and replacing each part with its own standard ordered rooted tree. This ranking is an ordered variation of Matula-Goebel numbers, giving a bijective correspondence between positive integers and unlabeled ordered rooted trees.
A generalized Bethe tree is an unlabeled rooted tree where all branches directly under the same root are equal.

Examples

			The terms together with their corresponding ordered rooted trees begin:
    1: o
    2: (o)
    3: ((o))
    4: (oo)
    5: (((o)))
    8: (ooo)
    9: ((oo))
   11: ((o)(o))
   16: (oooo)
   17: ((((o))))
   32: (ooooo)
   37: (((o))((o)))
   43: ((o)(o)(o))
   64: (oooooo)
  128: (ooooooo)
  129: ((ooo))
  137: ((oo)(oo))
  171: ((o)(o)(o)(o))
		

Crossrefs

These trees are counted by A003238.
The unordered version is A214577, also counted by A003238.
A000081 counts unlabeled rooted trees, ranked by A358378.
A358371 and A358372 count leaves and nodes in standard ordered rooted trees.
A358374 ranks ordered identity trees, counted by A032027.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    srt[n_]:=If[n==1,{},srt/@stc[n-1]];
    Select[Range[1000],FreeQ[srt[#],[_]?(!SameQ@@#&)]&]

A032027 Number of planted planar trees (n+1 nodes) where any 2 subtrees extending from the same node are different.

Original entry on oeis.org

1, 1, 1, 3, 5, 13, 35, 95, 255, 715, 2081, 6003, 17645, 52127, 155863, 468129, 1415521, 4301055, 13134789, 40275109, 123970669, 382919917, 1186475687, 3686899725, 11487023793, 35876838669, 112304155021, 352276801491
Offset: 1

Views

Author

Keywords

Examples

			From _Gus Wiseman_, Nov 15 2022: (Start)
The a(1) = 1 through a(6) = 13 ordered rooted identity trees (ranked by A358374):
  o  (o)  ((o))  ((o)o)   (((o))o)   (((o)o)o)
                 (o(o))   (((o)o))   ((o(o))o)
                 (((o)))  ((o(o)))   (o((o)o))
                          (o((o)))   (o(o(o)))
                          ((((o))))  ((((o)))o)
                                     ((((o))o))
                                     ((((o)o)))
                                     (((o))(o))
                                     (((o(o))))
                                     ((o)((o)))
                                     ((o((o))))
                                     (o(((o))))
                                     (((((o)))))
(End)
		

Crossrefs

The unordered version is A004111, ranked by A276625.
These trees (ordered rooted identity) are ranked by A358374.

Programs

  • Mathematica
    aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[aot[n],FreeQ[#,[_]?(!UnsameQ@@#&)]&]],{n,1,10}] (* Gus Wiseman, Nov 15 2022 *)
  • PARI
    AGK(v)={apply(p->subst(serlaplace(y^0*p),y,1), Vec(prod(k=1, #v, (1 + x^k*y + O(x*x^#v))^v[k])-1, -#v))}
    seq(n)={my(v=[1]); for(i=2, n, v=concat([1], AGK(v))); v} \\ Andrew Howroyd, Sep 20 2018

Formula

Shifts left under "AGK" (ordered, elements, unlabeled) transform.

A358378 Numbers k such that the k-th standard ordered rooted tree is fully canonically ordered (counted by A000081).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 21, 25, 27, 29, 31, 32, 37, 41, 43, 49, 53, 57, 59, 61, 63, 64, 65, 73, 81, 85, 101, 105, 107, 113, 117, 121, 123, 125, 127, 128, 129, 137, 145, 165, 169, 171, 193, 201, 209, 213, 229, 233, 235, 241, 245, 249, 251
Offset: 1

Views

Author

Gus Wiseman, Nov 14 2022

Keywords

Comments

The ordering of finitary multisets is first by length and then lexicographically. This is also the ordering used for Mathematica expressions.
We define the n-th standard ordered rooted tree to be obtained by taking the (n-1)-th composition in standard order (graded reverse-lexicographic, A066099) as root and replacing each part with its own standard ordered rooted tree. This ranking is an ordered variation of Matula-Goebel numbers, giving a bijective correspondence between positive integers and unlabeled ordered rooted trees.

Examples

			The terms together with their corresponding ordered rooted trees begin:
   1: o
   2: (o)
   3: ((o))
   4: (oo)
   5: (((o)))
   7: (o(o))
   8: (ooo)
   9: ((oo))
  11: ((o)(o))
  13: (o((o)))
  15: (oo(o))
  16: (oooo)
  17: ((((o))))
  21: ((o)((o)))
		

Crossrefs

These trees are counted by A000081.
A358371 and A358372 count leaves and nodes in standard ordered rooted trees.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    srt[n_]:=If[n==1,{},srt/@stc[n-1]];
    Select[Range[1000],FreeQ[srt[#],[_]?(!OrderedQ[#]&)]&]

A358376 Numbers k such that the k-th standard ordered rooted tree is lone-child-avoiding (counted by A005043).

Original entry on oeis.org

1, 4, 8, 16, 18, 25, 32, 36, 50, 57, 64, 72, 100, 114, 121, 128, 137, 144, 200, 228, 242, 249, 256, 258, 274, 281, 288, 385, 393, 400, 456, 484, 498, 505, 512, 516, 548, 562, 569, 576, 770, 786, 793, 800, 897, 905, 912, 968, 996, 1010, 1017, 1024, 1032, 1096
Offset: 1

Views

Author

Gus Wiseman, Nov 14 2022

Keywords

Comments

We define the n-th standard ordered rooted tree to be obtained by taking the (n-1)-th composition in standard order (graded reverse-lexicographic, A066099) as root and replacing each part with its own standard ordered rooted tree. This ranking is an ordered variation of Matula-Goebel numbers, giving a bijective correspondence between positive integers and unlabeled ordered rooted trees.

Examples

			The initial terms and their corresponding trees:
    1: o
    4: (oo)
    8: (ooo)
   16: (oooo)
   18: ((oo)o)
   25: (o(oo))
   32: (ooooo)
   36: ((oo)oo)
   50: (o(oo)o)
   57: (oo(oo))
   64: (oooooo)
   72: ((oo)ooo)
  100: (o(oo)oo)
  114: (oo(oo)o)
  121: (ooo(oo))
  128: (ooooooo)
  137: ((oo)(oo))
  144: ((oo)oooo)
  200: (o(oo)ooo)
		

Crossrefs

These trees are counted by A005043.
The series-reduced case appears to be counted by A284778.
The unordered version is A291636, counted by A001678.
A000081 counts unlabeled rooted trees, ranked by A358378.
A358371 and A358372 count leaves and nodes in standard ordered rooted trees.
A358374 ranks ordered identity trees, counted by A032027.
A358375 ranks ordered binary trees, counted by A126120.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    srt[n_]:=If[n==1,{},srt/@stc[n-1]];
    Select[Range[100],FreeQ[srt[#],[_]?(Length[#]==1&)]&]

A358374 Numbers k such that the k-th standard ordered rooted tree is an identity tree (counted by A032027).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 13, 17, 19, 21, 33, 34, 38, 39, 42, 45, 49, 51, 53, 65, 66, 67, 81, 97, 130, 131, 133, 134, 135, 145, 161, 162, 177, 193, 195, 209, 259, 261, 262, 263, 266, 269, 289, 290, 305, 321, 322, 353, 387, 389, 401, 417, 513, 517, 518, 519, 522
Offset: 1

Views

Author

Gus Wiseman, Nov 14 2022

Keywords

Comments

We define the n-th standard ordered rooted tree to be obtained by taking the (n-1)-th composition in standard order (graded reverse-lexicographic, A066099) as root and replacing each part with its own standard ordered rooted tree. This ranking is an ordered variation of Matula-Goebel numbers, giving a bijective correspondence between positive integers and unlabeled ordered rooted trees.
A rooted identity tree is an unlabeled rooted tree with no repeated branches directly under the same root.

Examples

			The terms together with their corresponding ordered rooted trees begin:
   1: o
   2: (o)
   3: ((o))
   5: (((o)))
   6: ((o)o)
   7: (o(o))
  10: (((o))o)
  13: (o((o)))
  17: ((((o))))
  19: (((o))(o))
  21: ((o)((o)))
  33: (((o)o))
  34: ((((o)))o)
  38: (((o))(o)o)
  39: (((o))o(o))
  42: ((o)((o))o)
  45: ((o)o((o)))
		

Crossrefs

These trees are counted by A032027.
The unordered version is A276625, counted by A004111.
A000081 counts unlabeled rooted trees, ranked by A358378.
A358371 and A358372 count leaves and nodes in standard ordered rooted trees.
A358375 ranks ordered binary trees, counted by A126120.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    srt[n_]:=If[n==1,{},srt/@stc[n-1]];
    Select[Range[100],FreeQ[srt[#],[_]?(!UnsameQ@@#&)]&]

A358375 Numbers k such that the k-th standard ordered rooted tree is binary.

Original entry on oeis.org

1, 4, 18, 25, 137, 262146, 393217, 2097161, 2228225
Offset: 1

Views

Author

Gus Wiseman, Nov 14 2022

Keywords

Comments

We define the n-th standard ordered rooted tree to be obtained by taking the (n-1)-th composition in standard order (graded reverse-lexicographic, A066099) as root and replacing each part with its own standard ordered rooted tree. This ranking is an ordered variation of Matula-Goebel numbers, giving a bijective correspondence between positive integers and unlabeled ordered rooted trees.

Examples

			The initial terms and their corresponding trees:
       1: o
       4: (oo)
      18: ((oo)o)
      25: (o(oo))
     137: ((oo)(oo))
  262146: (((oo)o)o)
  393217: (o((oo)o))
		

Crossrefs

The unordered version is A111299, counted by A001190
These trees are counted by A126120.
A000081 counts unlabeled rooted trees, ranked by A358378.
A358371 and A358372 count leaves and nodes in standard ordered rooted trees.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    srt[n_]:=If[n==1,{},srt/@stc[n-1]];
    Select[Range[1000],FreeQ[srt[#],[_]?(Length[#]!=2&)]&]
Showing 1-10 of 19 results. Next