cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 36 results. Next

A289501 Number of enriched p-trees of weight n.

Original entry on oeis.org

1, 1, 2, 4, 12, 32, 112, 352, 1296, 4448, 16640, 59968, 231168, 856960, 3334400, 12679424, 49991424, 192890880, 767229952, 2998427648, 12015527936, 47438950400, 191117033472, 760625733632, 3082675150848, 12346305839104, 50223511928832, 202359539335168
Offset: 0

Views

Author

Gus Wiseman, Jul 07 2017

Keywords

Comments

An enriched p-tree of weight n is either (case 1) the number n itself, or (case 2) a sequence of two or more enriched p-trees, having a weakly decreasing sequence of weights summing to n.

Examples

			The a(4) = 12 enriched p-trees are:
  4,
  (31), ((21)1), (((11)1)1), ((111)1),
  (22), (2(11)), ((11)2), ((11)(11)),
  (211), ((11)11),
  (1111).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, b(n, i-1)+a(i)*b(n-i, min(n-i, i))))
        end:
    a:= n-> `if`(n=0, 1, 1+b(n, n-1)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jul 07 2017
  • Mathematica
    a[n_]:=a[n]=1+Sum[Times@@a/@y,{y,Rest[IntegerPartitions[n]]}];
    Array[a,20]
    (* Second program: *)
    b[n_, i_] := b[n, i] = If[n == 0, 1,
         If[i<1, 0, b[n, i-1] + a[i] b[n-i, Min[n-i, i]]]];
    a[n_] := If[n == 0, 1, 1 + b[n, n-1]];
    a /@ Range[0, 30] (* Jean-François Alcover, May 09 2021, after Alois P. Heinz *)
  • PARI
    seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + polcoef(1/prod(k=1, n-1, 1 - v[k]*x^k + O(x*x^n)), n)); concat([1], v)} \\ Andrew Howroyd, Aug 26 2018

Formula

O.g.f.: (1/(1-x) + Product_{i>0} 1/(1-a(i)*x^i))/2.

A141268 Number of phylogenetic rooted trees with n unlabeled objects.

Original entry on oeis.org

1, 2, 4, 11, 30, 96, 308, 1052, 3648, 13003, 47006, 172605, 640662, 2402388, 9082538, 34590673, 132566826, 510904724, 1978728356, 7697565819, 30063818314, 117840547815, 463405921002, 1827768388175, 7228779397588, 28661434308095, 113903170011006, 453632267633931
Offset: 1

Views

Author

Thomas Wieder, Jun 20 2008

Keywords

Comments

Unlabeled analog of A005804 = Phylogenetic trees with n labels.
From Gus Wiseman, Jul 31 2018: (Start)
a(n) is the number of series-reduced rooted trees whose leaves form an integer partition of n. For example, the following are the a(4) = 11 series-reduced rooted trees whose leaves form an integer partition of 4.
4,
(13),
(22),
(112), (1(12)), (2(11)),
(1111), (11(11)), (1(1(11))), (1(111)), ((11)(11)).
(End)

Examples

			For n=4 we have A141268(4)=11 because
Set(Set(Z),Set(Z),Set(Z,Z)),
Set(Set(Z),Set(Set(Z),Set(Z,Z))),
Set(Z,Z,Z,Z),
Set(Set(Z,Z),Set(Z,Z)),
Set(Set(Set(Z),Set(Z)),Set(Z,Z)),
Set(Set(Z),Set(Z),Set(Set(Z),Set(Z))),
Set(Set(Z),Set(Z),Set(Z),Set(Z)),
Set(Set(Z),Set(Set(Z),Set(Z),Set(Z))),
Set(Set(Set(Z),Set(Z)),Set(Set(Z),Set(Z))),
Set(Set(Z),Set(Z,Z,Z)),
Set(Set(Z),Set(Set(Z),Set(Set(Z),Set(Z))))
		

Crossrefs

Programs

  • Maple
    with(combstruct): A141268 := [H, {H=Union(Set(Z,card>=1),Set(H,card>=2))}, unlabelled]; seq(count(A141268, size=j), j=1..20);
    # second Maple program:
    b:= proc(n,i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1)*binomial(a(i)+j-1, j), j=0..n/i)))
        end:
    a:= n-> `if`(n<2, n, 1+b(n, n-1)):
    seq(a(n), n=1..30);  # Alois P. Heinz, Jun 18 2018
  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    t[n_]:=t[n]=If[PrimeQ[n],{n},Join@@Table[Union[Sort/@Tuples[t/@fac]],{fac,Select[facs[n],Length[#]>1&]}]];
    Table[Sum[Length[t[Times@@Prime/@ptn]],{ptn,IntegerPartitions[n]}],{n,7}] (* Gus Wiseman, Jul 31 2018 *)
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0,
         Sum[b[n-i*j, i-1]*Binomial[a[i]+j-1, j], {j, 0, n/i}]]];
    a[n_] := If[n < 2, n, 1 + b[n, n-1]];
    Array[a, 30] (* Jean-François Alcover, May 21 2021, after Alois P. Heinz *)
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(v=vector(n)); for(n=1, n, v[n]=1 + EulerT(v[1..n])[n]); v} \\ Andrew Howroyd, Oct 26 2018

Formula

a(n) ~ c * d^n / n^(3/2), where d = 4.210216501727104448901818751..., c = 0.21649387167268793159311306... . - Vaclav Kotesovec, Sep 04 2014

Extensions

Offset corrected and more terms from Alois P. Heinz, Apr 21 2012

A005804 Number of phylogenetic rooted trees with n labels.

Original entry on oeis.org

1, 2, 8, 58, 612, 8374, 140408, 2785906, 63830764, 1658336270, 48169385024, 1546832023114, 54413083601268, 2080827594898342, 85948745163598088, 3813417859420469410, 180876816831806597500, 9133309115320844870078, 489156459621633161274704, 27696066472039561313329018
Offset: 1

Views

Author

Keywords

Comments

These are series-reduced rooted trees where each leaf is a nonempty subset of the set of n labels.
See A141268 for phylogenetic rooted trees with n unlabeled objects. - Thomas Wieder, Jun 20 2008

Examples

			a(3)=8 because we have:
  Set(Set(Z[3]),Set(Z[1]),Set(Z[2])),
  Set(Z[3],Z[2],Z[1]),
  Set(Set(Z[3],Z[1]),Set(Z[2])),
  Set(Set(Set(Z[3]),Set(Z[2])),Set(Z[1])),
  Set(Set(Set(Z[3]),Set(Z[1])),Set(Z[2])),
  Set(Set(Z[3]),Set(Set(Z[1]),Set(Z[2]))),
  Set(Set(Z[3]),Set(Z[2],Z[1])),
  Set(Set(Z[3],Z[2]),Set(Z[1])).
From _Gus Wiseman_, Jul 31 2018: (Start)
The 8 series-reduced rooted trees whose leaves are a set partition of {1,2,3}:
  {1,2,3}
  ({1}{2,3})
  ({1}({2}{3}))
  ({2}{1,3})
  ({2}({1}{3}))
  ({3}{1,2})
  ({3}({1}{2}))
  ({1}{2}{3})
(End)
		

References

  • Foulds, L. R.; Robinson, R. W. Enumeration of phylogenetic trees without points of degree two. Ars Combin. 17 (1984), A, 169-183. Math. Rev. 85f:05045
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    # From Thomas Wieder, Jun 20 2008: (Start)
    ser := series(-LambertW(-1/2*exp(1/2*exp(z)-1)) + 1/2*exp(z)-1, z=0, 10);
    seq(n!*coeff(ser, z, n), n = 1..9);
    # Alternative:
    with(combstruct):
    A005804 := [H, {H=Union(Set(Z,card>=1), Set(H,card>=2))}, labelled];
    seq(count(A005804,size=j), j=1..20);
    # (End)
  • Mathematica
    numSetPtnsOfType[ptn_]:=Total[ptn]!/Times@@Factorial/@ptn/Times@@Factorial/@Length/@Split[ptn];
    a[n_]:=a[n]=If[n==1,1,1+Sum[numSetPtnsOfType[ptn]*Times@@a/@ptn,{ptn,Rest[IntegerPartitions[n]]}]];
    Array[a,20] (* Gus Wiseman, Jul 31 2018 *)
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    b(n,k)={my(v=vector(n)); for(n=1, n, v[n]=binomial(n+k-1, n) + EulerT(v[1..n])[n]); v}
    seq(n)={my(M=Mat(vectorv(n, k, b(n,k)))); vector(n, k, sum(i=1, k, binomial(k, i)*(-1)^(k-i)*M[i,k]))} \\ Andrew Howroyd, Oct 26 2018

Formula

Stirling transform of [ 1, 1, 4, 26, 236, ... ] = A000311 [ Foulds and Robinson ].
E.g.f.: -LambertW(-(1/2)*exp((1/2)*exp(z) - 1)) + (1/2)*exp(z) - 1. - Thomas Wieder, Jun 20 2008
a(n) ~ sqrt(log(2))*(log(2)+log(log(2)))^(1/2-n)*n^(n-1)/exp(n). - Vaclav Kotesovec, Aug 07 2013
E.g.f. f(x) satisfies 2*f(x) - exp(f(x)) = exp(x) - 2. - Gus Wiseman, Jul 31 2018

Extensions

More terms, comment from Christian G. Bower, Dec 15 1999

A319312 Number of series-reduced rooted trees whose leaves are integer partitions whose multiset union is an integer partition of n.

Original entry on oeis.org

1, 3, 7, 22, 67, 242, 885, 3456, 13761, 56342, 234269, 989335, 4225341, 18231145, 79321931, 347676128, 1533613723, 6803017863, 30328303589, 135808891308, 610582497919, 2755053631909, 12472134557093, 56630659451541, 257841726747551, 1176927093597201
Offset: 1

Views

Author

Gus Wiseman, Sep 17 2018

Keywords

Comments

Also the number of orderless tree-factorizations of Heinz numbers of integer partitions of n.
Also the number of phylogenetic trees on a multiset of labels summing to n.

Examples

			The a(3) = 7 trees:
  (3)    (21)        (111)
       ((1)(2))    ((1)(11))
                  ((1)(1)(1))
                 ((1)((1)(1)))
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    phyfacs[n_]:=Prepend[Join@@Table[Union[Sort/@Tuples[phyfacs/@f]],{f,Select[facs[n],Length[#]>1&]}],n];
    Table[Sum[Length[phyfacs[Times@@Prime/@m]],{m,IntegerPartitions[n]}],{n,6}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    seq(n)={my(v=[]); for(n=1, n, v=concat(v, numbpart(n) + EulerT(concat(v,[0]))[n])); v} \\ Andrew Howroyd, Sep 18 2018

Extensions

Terms a(14) and beyond from Andrew Howroyd, Sep 18 2018

A301467 Number of enriched r-trees of size n with no empty subtrees.

Original entry on oeis.org

1, 2, 4, 8, 20, 48, 136, 360, 1040, 2944, 8704, 25280, 76320, 226720, 692992, 2096640, 6470016, 19799936, 61713152, 190683520, 598033152, 1863995392, 5879859200, 18438913536, 58464724992, 184356152832, 586898946048, 1859875518464, 5941384080384, 18901502482432
Offset: 1

Views

Author

Gus Wiseman, Mar 21 2018

Keywords

Comments

An enriched r-tree of size n > 0 with no empty subtrees is either a single node of size n, or a finite nonempty sequence of enriched r-trees with no empty subtrees and with weakly decreasing sizes summing to n - 1.

Examples

			The a(4) = 8 enriched r-trees with no empty subtrees: 4, (3), (21), ((2)), (111), ((11)), ((1)1), (((1))).
The a(5) = 20 enriched r-trees with no empty subtrees:
  5,
  (4), ((3)), ((21)), (((2))), ((111)), (((11))), (((1)1)), ((((1)))),
  (31), (22), (2(1)), ((2)1), ((1)2), ((11)1), ((1)(1)), (((1))1),
  (211), ((1)11),
  (1111).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1)* a(i)^j, j=0..n/i)))
        end:
    a:= n-> `if`(n<2, n, 1+b(n-1$2)):
    seq(a(n), n=1..30);  # Alois P. Heinz, Jun 21 2018
  • Mathematica
    pert[n_]:=pert[n]=If[n===1,1,1+Sum[Times@@pert/@y,{y,IntegerPartitions[n-1]}]];
    Array[pert,30]
    (* Second program: *)
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0,
         Sum[b[n - i*j, i - 1] a[i]^j, {j, 0, n/i}]]];
    a[n_] := a[n] = If[n < 2, n, 1 + b[n-1, n-1]];
    Array[a, 30] (* Jean-François Alcover, May 09 2021, after Alois P. Heinz *)
  • PARI
    seq(n)={my(v=vector(n)); v[1]=1; for(n=2, n, v[n] = 1 + polcoef(1/prod(k=1, n-1, 1 - v[k]*x^k + O(x^n)), n-1)); v} \\ Andrew Howroyd, Aug 26 2018

Formula

O.g.f.: x^2/(1 - x) + x Product_{i > 0} 1/(1 - a(i) x^i).

A320154 Number of series-reduced balanced rooted trees whose leaves form a set partition of {1,...,n}.

Original entry on oeis.org

1, 2, 5, 18, 92, 588, 4328, 35920, 338437, 3654751, 45105744, 625582147, 9539374171, 157031052142, 2757275781918, 51293875591794, 1007329489077804, 20840741773898303, 453654220906310222, 10380640686263467204, 249559854371799622350, 6301679967177242849680
Offset: 1

Views

Author

Gus Wiseman, Oct 06 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches, and balanced if all leaves are the same distance from the root.
Also the number of balanced phylogenetic rooted trees on n distinct labels.

Examples

			The a(1) = 1 through a(4) = 18 rooted trees:
  (1)  (12)      (123)        (1234)
       ((1)(2))  ((1)(23))    ((1)(234))
                 ((2)(13))    ((12)(34))
                 ((3)(12))    ((13)(24))
                 ((1)(2)(3))  ((14)(23))
                              ((2)(134))
                              ((3)(124))
                              ((4)(123))
                              ((1)(2)(34))
                              ((1)(3)(24))
                              ((1)(4)(23))
                              ((2)(3)(14))
                              ((2)(4)(13))
                              ((3)(4)(12))
                              ((1)(2)(3)(4))
                              (((1)(2))((3)(4)))
                              (((1)(3))((2)(4)))
                              (((1)(4))((2)(3)))
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    gug[m_]:=Prepend[Join@@Table[Union[Sort/@Tuples[gug/@mtn]],{mtn,Select[sps[m],Length[#]>1&]}],m];
    Table[Length[Select[gug[Range[n]],SameQ@@Length/@Position[#,_Integer]&]],{n,9}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    b(n,k)={my(u=vector(n), v=vector(n)); u[1]=k; u=EulerT(u); while(u, v+=u; u=EulerT(u)-u); v}
    seq(n)={my(M=Mat(vectorv(n,k,b(n,k)))); vector(n, k, sum(i=1, k, binomial(k,i)*(-1)^(k-i)*M[i,k]))} \\ Andrew Howroyd, Oct 26 2018

Extensions

Terms a(9) and beyond from Andrew Howroyd, Oct 26 2018

A316655 Number of series-reduced rooted trees whose leaves span an initial interval of positive integers with multiplicities the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 1, 1, 2, 3, 5, 4, 12, 9, 12, 17, 33, 29, 44, 26, 90, 90, 261, 68, 168, 93, 766, 144, 197, 307, 575, 269, 2312, 428, 7068, 236, 625, 1017, 863, 954, 21965, 3409, 2342, 712
Offset: 1

Views

Author

Gus Wiseman, Jul 09 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			Sequence of sets of trees begins:
1:
2: 1
3: (11)
4: (12)
5: (1(11)), (111)
6: (1(12)), (2(11)), (112)
7: (1(1(11))), (1(111)), ((11)(11)), (11(11)), (1111)
8: (1(23)), (2(13)), (3(12)), (123)
9: (1(1(22))), (1(2(12))), (1(122)), (2(1(12))), (2(2(11))), (2(112)), ((11)(22)), ((12)(12)), (11(22)), (12(12)), (22(11)), (1122)
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    gro[m_]:=If[Length[m]==1,m,Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m],Length[#]>1&])]];
    Table[Length[gro[Flatten[MapIndexed[Table[#2,{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]]]],{n,20}]

Formula

a(prime(n)) = A000669(n).
a(2^n) = A000311(n).

Extensions

a(37)-a(40) from Robert Price, Sep 13 2018

A316694 Number of lone-child-avoiding locally disjoint rooted identity trees whose leaves form an integer partition of n.

Original entry on oeis.org

1, 1, 2, 3, 6, 13, 28, 62, 143, 338, 804, 1948, 4789, 11886, 29796, 75316, 191702, 491040, 1264926, 3274594, 8514784, 22229481, 58243870
Offset: 1

Views

Author

Gus Wiseman, Jul 10 2018

Keywords

Comments

A rooted tree is lone-child-avoiding if every non-leaf node has at least two branches. It is locally disjoint if no branch overlaps any other (unequal) branch of the same root. It is an identity tree if no branch appears multiple times under the same root.

Examples

			The a(7) = 28 rooted trees:
  7,
  (16),
  (25),
  (1(15)),
  (34),
  (1(24)), (2(14)), (4(12)), (124),
  (1(1(14))),
  (3(13)),
  (2(23)),
  (1(1(23))), (1(2(13))), (1(3(12))), (1(123)), (2(1(13))), (3(1(12))), (12(13)), (13(12)),
  (1(1(1(13)))),
  (2(2(12))),
  (1(1(2(12)))), (1(2(1(12)))), (1(12(12))), (2(1(1(12)))), (12(1(12))),
  (1(1(1(1(12))))).
Missing from this list but counted by A300660 are ((12)(13)) and ((12)(1(12))).
		

Crossrefs

The semi-identity tree version is A212804.
Not requiring local disjointness gives A300660.
The non-identity tree version is A316696.
This is the case of A331686 where all leaves are singletons.
Rooted identity trees are A004111.
Locally disjoint rooted identity trees are A316471.
Lone-child-avoiding locally disjoint rooted trees are A331680.
Locally disjoint enriched identity p-trees are A331684.

Programs

  • Mathematica
    disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
    nms[n_]:=nms[n]=Prepend[Join@@Table[Select[Union[Sort/@Tuples[nms/@ptn]],And[UnsameQ@@#,disjointQ[#]]&],{ptn,Rest[IntegerPartitions[n]]}],{n}];
    Table[Length[nms[n]],{n,10}]

Extensions

a(21)-a(23) from Robert Price, Sep 16 2018
Updated with corrected terminology by Gus Wiseman, Feb 06 2020

A331686 Number of lone-child-avoiding locally disjoint rooted identity trees whose leaves are integer partitions whose multiset union is an integer partition of n.

Original entry on oeis.org

1, 2, 4, 8, 17, 41, 103, 280, 793, 2330, 6979, 21291
Offset: 1

Views

Author

Gus Wiseman, Jan 31 2020

Keywords

Comments

A rooted tree is locally disjoint if no child of any vertex has branches overlapping the branches of any other (unequal) child of the same vertex. Lone-child-avoiding means there are no unary branchings. In an identity tree, all branches of any given vertex are distinct.

Examples

			The a(1) = 1 through a(5) = 17 trees:
  (1)  (2)   (3)       (4)            (5)
       (11)  (12)      (13)           (14)
             (111)     (22)           (23)
             ((1)(2))  (112)          (113)
                       (1111)         (122)
                       ((1)(3))       (1112)
                       ((2)(11))      (11111)
                       ((1)((1)(2)))  ((1)(4))
                                      ((2)(3))
                                      ((1)(22))
                                      ((3)(11))
                                      ((2)(111))
                                      ((1)((1)(3)))
                                      ((2)((1)(2)))
                                      ((11)((1)(2)))
                                      ((1)((2)(11)))
                                      ((1)((1)((1)(2))))
		

Crossrefs

The non-identity version is A331678.
The case where the leaves are all singletons is A316694.
Identity trees are A004111.
Locally disjoint identity trees are A316471.
Locally disjoint enriched identity p-trees are A331684.
Lone-child-avoiding locally disjoint rooted semi-identity trees are A212804.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
    mpti[m_]:=Prepend[Join@@Table[Select[Union[Sort/@Tuples[mpti/@p]],UnsameQ@@#&&disjointQ[#]&],{p,Select[mps[m],Length[#]>1&]}],m];
    Table[Sum[Length[mpti[m]],{m,Sort/@IntegerPartitions[n]}],{n,8}]

A331965 Matula-Goebel numbers of lone-child-avoiding rooted semi-identity trees.

Original entry on oeis.org

1, 4, 8, 14, 16, 28, 32, 38, 56, 64, 76, 86, 106, 112, 128, 133, 152, 172, 212, 214, 224, 256, 262, 266, 301, 304, 326, 344, 371, 424, 428, 448, 512, 524, 526, 532, 602, 608, 622, 652, 688, 742, 749, 766, 817, 848, 856, 886, 896, 917, 1007, 1024, 1048, 1052
Offset: 1

Views

Author

Gus Wiseman, Feb 04 2020

Keywords

Comments

First differs from A331683 in having 133, the Matula-Goebel number of the tree ((oo)(ooo)).
Lone-child-avoiding means there are no unary branchings.
In a semi-identity tree, the non-leaf branches of any given vertex are all distinct.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
Consists of one, and all composite numbers that are n times a power of two, where n is a squarefree number whose prime indices already belong to the sequence, and a prime index of n is a number m such that prime(m) divides n. [Clarified by Peter Munn and Gus Wiseman, Jun 24 2021]

Examples

			The sequence of all lone-child-avoiding rooted semi-identity trees together with their Matula-Goebel numbers begins:
    1: o
    4: (oo)
    8: (ooo)
   14: (o(oo))
   16: (oooo)
   28: (oo(oo))
   32: (ooooo)
   38: (o(ooo))
   56: (ooo(oo))
   64: (oooooo)
   76: (oo(ooo))
   86: (o(o(oo)))
  106: (o(oooo))
  112: (oooo(oo))
  128: (ooooooo)
  133: ((oo)(ooo))
  152: (ooo(ooo))
  172: (oo(o(oo)))
  212: (oo(oooo))
  214: (o(oo(oo)))
The sequence of terms together with their prime indices begins:
    1: {}                 224: {1,1,1,1,1,4}
    4: {1,1}              256: {1,1,1,1,1,1,1,1}
    8: {1,1,1}            262: {1,32}
   14: {1,4}              266: {1,4,8}
   16: {1,1,1,1}          301: {4,14}
   28: {1,1,4}            304: {1,1,1,1,8}
   32: {1,1,1,1,1}        326: {1,38}
   38: {1,8}              344: {1,1,1,14}
   56: {1,1,1,4}          371: {4,16}
   64: {1,1,1,1,1,1}      424: {1,1,1,16}
   76: {1,1,8}            428: {1,1,28}
   86: {1,14}             448: {1,1,1,1,1,1,4}
  106: {1,16}             512: {1,1,1,1,1,1,1,1,1}
  112: {1,1,1,1,4}        524: {1,1,32}
  128: {1,1,1,1,1,1,1}    526: {1,56}
  133: {4,8}              532: {1,1,4,8}
  152: {1,1,1,8}          602: {1,4,14}
  172: {1,1,14}           608: {1,1,1,1,1,8}
  212: {1,1,16}           622: {1,64}
  214: {1,28}             652: {1,1,38}
		

Crossrefs

The non-semi case is {1}.
Not requiring lone-child-avoidance gives A306202.
The locally disjoint version is A331683.
These trees are counted by A331966.
The semi-lone-child-avoiding case is A331994.
Matula-Goebel numbers of rooted identity trees are A276625.
Matula-Goebel numbers of lone-child-avoiding rooted trees are A291636.
Semi-identity trees are counted by A306200.

Programs

  • Mathematica
    csiQ[n_]:=n==1||!PrimeQ[n]&&FreeQ[FactorInteger[n],{?(#>2&),?(#>1&)}]&&And@@csiQ/@PrimePi/@First/@FactorInteger[n];
    Select[Range[100],csiQ]

Formula

Intersection of A291636 and A306202.
Showing 1-10 of 36 results. Next