A000311 Schroeder's fourth problem; also series-reduced rooted trees with n labeled leaves; also number of total partitions of n.
0, 1, 1, 4, 26, 236, 2752, 39208, 660032, 12818912, 282137824, 6939897856, 188666182784, 5617349020544, 181790703209728, 6353726042486272, 238513970965257728, 9571020586419012608, 408837905660444010496, 18522305410364986906624
Offset: 0
Examples
E.g.f.: A(x) = x + x^2/2! + 4*x^3/3! + 26*x^4/4! + 236*x^5/5! + 2752*x^6/6! + ... where exp(A(x)) = 1 - x + 2*A(x), and thus Series_Reversion(A(x)) = x - x^2/2! - x^3/3! - x^4/4! - x^5/5! - x^6/6! + ... O.g.f.: G(x) = x + x^2 + 4*x^3 + 26*x^4 + 236*x^5 + 2752*x^6 + 39208*x^7 + ... where G(x) = x/2 + x/(2*(2-x)) + x/(2*(2-x)*(2-2*x)) + x/(2*(2-x)*(2-2*x)*(2-3*x)) + x/(2*(2-x)*(2-2*x)*(2-3*x)*(2-4*x)) + x/(2*(2-x)*(2-2*x)*(2-3*x)*(2-4*x)*(2-5*x)) + ... From _Gus Wiseman_, Dec 28 2019: (Start) A rooted tree is series-reduced if it has no unary branchings, so every non-leaf node covers at least two other nodes. The a(4) = 26 series-reduced rooted trees with 4 labeled leaves are the following. Each bracket (...) corresponds to a non-leaf node. (1234) ((12)34) ((123)4) (1(23)4) (1(234)) (12(34)) ((124)3) (1(24)3) ((134)2) ((13)24) (((12)3)4) ((14)23) ((1(23))4) ((12)(34)) (1((23)4)) (1(2(34))) (((12)4)3) ((1(24))3) (1((24)3)) (((13)2)4) ((13)(24)) (((13)4)2) ((1(34))2) (((14)2)3) ((14)(23)) (((14)3)2) (End)
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 224.
- J. Felsenstein, Inferring phyogenies, Sinauer Associates, 2004; see p. 25ff.
- L. R. Foulds and R. W. Robinson, Enumeration of phylogenetic trees without points of degree two. Ars Combin. 17 (1984), A, 169-183. Math. Rev. 85f:05045
- T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 197.
- E. Schroeder, Vier combinatorische Probleme, Z. f. Math. Phys., 15 (1870), 361-376.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see "total partitions", Example 5.2.5, Equation (5.27), and also Fig. 5-3 on page 14. See also the Notes on page 66.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..375 [Shortened file because terms grow rapidly: see Sloane link below for additional terms]
- Mohamed Barakat, Reimer Behrends, Christopher Jefferson, Lukas Kühne, and Martin Leuner, On the generation of rank 3 simple matroids with an application to Terao's freeness conjecture, arXiv:1907.01073 [math.CO], 2019.
- Frédérique Bassino, Mathilde Bouvel, Valentin Féray, Lucas Gerin, Mickaël Maazoun, and Adeline Pierrot, Random cographs: Brownian graphon limit and asymptotic degree distribution, arXiv:1907.08517 [math.CO], 2019.
- Veronica Bitonti, Bishal Deb, and Alan D. Sokal, Thron-type continued fractions (T-fractions) for some classes of increasing trees, arXiv:2412.10214 [math.CO], 2024. See p. 58.
- A. Blass, N. Dobrinen, and D. Raghavan, The next best thing to a P-point, arXiv preprint arXiv:1308.3790 [math.LO], 2013.
- P. J. Cameron, Some treelike objects, Quart. J. Math. Oxford, 38 (1987), 155-183. MR0891613 (89a:05009). See p. 155 and 159.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- L. Carlitz and J. Riordan, The number of labeled two-terminal series-parallel networks, Duke Math. J. 23 (1956), 435-445 (the sequence called {A_n}).
- Tom Copeland, Comments on A000311
- Brian Drake, Ira M. Gessel, and Guoce Xin, Three Proofs and a Generalization of the Goulden-Litsyn-Shevelev Conjecture on a Sequence Arising in Algebraic Geometry, J. of Integer Sequences, Vol. 10 (2007), Article 07.3.7
- John Engbers, David Galvin, and Clifford Smyth, Restricted Stirling and Lah numbers and their inverses, arXiv:1610.05803 [math.CO], 2016.
- J. Felsenstein, The number of evolutionary trees, Systematic Zoology, 27 (1978), 27-33. (Annotated scanned copy)
- J. Felsenstein, The number of evolutionary trees, Systematic Biology, 27 (1978), pp. 27-33, 1978.
- S. R. Finch, Series-parallel networks, July 7, 2003. [Cached copy, with permission of the author]
- Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018.
- Philippe Flajolet, A Problem in Statistical Classification Theory
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 129
- Daniel L. Geisler, Combinatorics of Iterated Functions
- M. D. Hendy, C. H. C. Little, David Penny, Comparing trees with pendant vertices labelled, SIAM J. Appl. Math. 44 (5) (1984) Table 1
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 69
- D. Jackson, A. Kempf, and A. Morales, A robust generalization of the Legendre transform for QFT, arXiv:1612.0046 [hep-th], 2017.
- V. P. Johnson, Enumeration Results on Leaf Labeled Trees, Ph. D. Dissertation, Univ. Southern Calif., 2012.
- B. R. Jones, On tree hook length formulas, Feynman rules and B-series, Master's thesis, Simon Fraser University, 2014.
- Vladimir V. Kruchinin, The method for obtaining expressions for coefficients of reverse generating functions, arXiv:1211.3244 [math.CO], 2012.
- Z. A. Lomnicki, Two-terminal series-parallel networks, Adv. Appl. Prob., 4 (1972), 109-150.
- Shi-Mei Ma, Jun-Ying Liu, Jean Yeh, and Yeong-Nan Yeh, Eulerian-type polynomials over Stirling permutations and box sorting algorithm, arXiv:2506.16438 [math.CO], 2025. See p. 5.
- Dragan Mašulović, Big Ramsey spectra of countable chains, arXiv:1912.03022 [math.CO], 2019.
- Arnau Mir, Francesc Rossello, and Lucia Rotger, Sound Colless-like balance indices for multifurcating trees, arXiv:1805.01329 [q-bio.PE], 2018.
- J. W. Moon, Some enumerative results on series-parallel networks, Annals Discrete Math., 33 (1987), 199-226.
- T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176. [Annotated, scanned copy]
- F. Murtagh, Counting dendrograms: a survey, Discrete Appl. Math., 7 (1984), 191-199.
- Andrew Elvey Price and Alan D. Sokal, Phylogenetic trees, augmented perfect matchings, and a Thron-type continued fraction (T-fraction) for the Ward polynomials, arXiv:2001.01468 [math.CO], 2020.
- P. Regner, Phylogenetic Trees: Selected Combinatorial Problems, Master's Thesis, 2012, Institute of Discrete Mathematics and Geometry, TU Vienna, pp. 50-59.
- J. Riordan, Letter to N. J. A. Sloane, Jul. 1970
- J. Riordan, The blossoming of Schröder's fourth problem, Acta Math., 137 (1976), 1-16.
- E. Schröder, Vier combinatorische Probleme, Z. f. Math. Phys., 15 (1870), 361-376. [Annotated scanned copy]
- N. J. A. Sloane, Table of n, a(n) for n = 0..500
- J. Taylor, Formal group laws and hypergraph colorings, doctoral thesis, Univ. of Wash., 2016, p. 95. [_Tom Copeland_, Dec 20 2018]
- Elena L. Wang and Guoce Xin, On Ward Numbers and Increasing Schröder Trees, arXiv:2507.15654 [math.CO], 2025. See pp. 2, 12.
- Index entries for sequences related to trees
- Index entries for sequences related to rooted trees
- Index entries for "core" sequences
- Index entries for sequences mentioned in Moon (1987)
- Index entries for sequences related to parenthesizing
Crossrefs
Programs
-
Maple
M:=499; a:=array(0..500); a[0]:=0; a[1]:=1; a[2]:=1; for n from 0 to 2 do lprint(n,a[n]); od: for n from 2 to M do a[n+1]:=(n+2)*a[n]+2*add(binomial(n,k)*a[k]*a[n-k+1],k=2..n-1); lprint(n+1,a[n+1]); od: Order := 50; t1 := solve(series((exp(A)-2*A-1),A)=-x,A); A000311 := n-> n!*coeff(t1,x,n); # second Maple program: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(combinat[multinomial](n, n-i*j, i$j)/j!* a(i)^j*b(n-i*j, i-1), j=0..n/i))) end: a:= n-> `if`(n<2, n, b(n, n-1)): seq(a(n), n=0..40); # Alois P. Heinz, Jan 28 2016 # faster program: b:= proc(n, i) option remember; `if`(i=0 and n=0, 1, `if`(i<=0 or i>n, 0, i*b(n-1, i) + (n+i-1)*b(n-1, i-1))) end: a:= n -> `if`(n<2, n, add(b(n-1, i), i=0..n-1)): seq(a(n), n=0..40); # Peter Luschny, Feb 15 2021
-
Mathematica
nn = 19; CoefficientList[ InverseSeries[ Series[1+2a-E^a, {a, 0, nn}], x], x]*Range[0, nn]! (* Jean-François Alcover, Jul 21 2011 *) a[ n_] := If[ n < 1, 0, n! SeriesCoefficient[ InverseSeries[ Series[ 1 + 2 x - Exp[x], {x, 0, n}]], n]]; (* Michael Somos, Jun 04 2012 *) a[n_] := (If[n < 2,n,(column = ConstantArray[0, n - 1]; column[[1]] = 1; For[j = 3, j <= n, j++, column = column * Flatten[{Range[j - 2], ConstantArray[0, (n - j) + 1]}] + Drop[Prepend[column, 0], -1] * Flatten[{Range[j - 1, 2*j - 3], ConstantArray[0, n - j]}];]; Sum[column[[i]], {i, n - 1}] )]); Table[a[n], {n, 0, 20}] (* Peter Regner, Oct 05 2012, after a formula by Felsenstein (1978) *) multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[multinomial[n, Join[{n-i*j}, Array[i&,j]]]/j!*a[i]^j *b[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := If[n<2, n, b[n, n-1]]; Table[ a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 07 2016, after Alois P. Heinz *) sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mtot[m_]:=Prepend[Join@@Table[Tuples[mtot/@p],{p,Select[sps[m],1
Gus Wiseman, Dec 28 2019 *) (* Lengthy but easy to follow *) lead[, n /; n < 3] := 0 lead[h_, n_] := Module[{p, i}, p = Position[h, {_}]; Sum[MapAt[{#, n} &, h, p[[i]]], {i, Length[p]}] ] follow[h_, n_] := Module[{r, i}, r = Replace[Position[h, {_}], {a__} -> {a, -1}, 1]; Sum[Insert[h, n, r[[i]]], {i, Length[r]}] ] marry[, n /; n < 3] := 0 marry[h_, n_] := Module[{p, i}, p = Position[h, _Integer]; Sum[MapAt[{#, n} &, h, p[[i]]], {i, Length[p]}] ] extend[a_ + b_, n_] := extend[a, n] + extend[b, n] extend[a_, n_] := lead[a, n] + follow[a, n] + marry[a, n] hierarchies[1] := hierarchies[1] = extend[hier[{}], 1] hierarchies[n_] := hierarchies[n] = extend[hierarchies[n - 1], n] (* Daniel Geisler, Aug 22 2022 *) -
Maxima
a(n):=if n=1 then 1 else sum((n+k-1)!*sum(1/(k-j)!*sum((2^i*(-1)^(i)*stirling2(n+j-i-1,j-i))/((n+j-i-1)!*i!),i,0,j),j,1,k),k,1,n-1); /* Vladimir Kruchinin, Jan 28 2012 */
-
PARI
{a(n) = local(A); if( n<0, 0, for( i=1, n, A = Pol(exp(A + x * O(x^i)) - A + x - 1)); n! * polcoeff(A, n))}; /* Michael Somos, Jan 15 2004 */
-
PARI
{a(n) = my(A); if( n<0, 0, A = O(x); for( i=1, n, A = intformal( 1 / (1 + x - 2*A))); n! * polcoeff(A, n))}; /* Michael Somos, Oct 25 2014 */
-
PARI
{a(n) = n! * polcoeff(serreverse(1+2*x - exp(x +x^2*O(x^n))), n)} for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Oct 27 2014
-
PARI
\p100 \\ set precision {A=Vec(sum(n=0, 600, 1.*x/prod(k=0, n, 2 - k*x + O(x^31))))} for(n=0, 25, print1(if(n<1,0,round(A[n])),", ")) \\ Paul D. Hanna, Oct 27 2014
-
Python
from functools import lru_cache from math import comb @lru_cache(maxsize=None) def A000311(n): return n if n <= 1 else -(n-1)*A000311(n-1)+comb(n,m:=n+1>>1)*(0 if n&1 else A000311(m)**2) + (sum(comb(n,i)*A000311(i)*A000311(n-i) for i in range(1,m))<<1) # Chai Wah Wu, Nov 10 2022
Formula
E.g.f. A(x) satisfies exp A(x) = 2*A(x) - x + 1.
a(0)=0, a(1)=a(2)=1; for n >= 2, a(n+1) = (n+2)*a(n) + 2*Sum_{k=2..n-1} binomial(n, k)*a(k)*a(n-k+1).
a(1)=1; for n>1, a(n) = -(n-1) * a(n-1) + Sum_{k=1..n-1} binomial(n, k) * a(k) * a(n-k). - Michael Somos, Jun 04 2012
From the umbral operator L in A135494 acting on x^n comes, umbrally, (a(.) + x)^n = (n * x^(n-1) / 2) - (x^n / 2) + Sum_{j>=1} j^(j-1) * (2^(-j) / j!) * exp(-j/2) * (x + j/2)^n giving a(n) = 2^(-n) * Sum_{j>=1} j^(n-1) * ((j/2) * exp(-1/2))^j / j! for n > 1. - Tom Copeland, Feb 11 2008
Let h(x) = 1/(2-exp(x)), an e.g.f. for A000670, then the n-th term of A000311 is given by ((h(x)*d/dx)^n)x evaluated at x=0, i.e., A(x) = exp(x*a(.)) = exp(x*h(u)*d/du) u evaluated at u=0. Also, dA(x)/dx = h(A(x)). - Tom Copeland, Sep 05 2011 (The autonomous differential eqn. here is also on p. 59 of Jones. - Tom Copeland, Dec 16 2019)
A134991 gives (b.+c.)^n = 0^n, for (b_n)=A000311(n+1) and (c_0)=1, (c_1)=-1, and (c_n)=-2* A000311(n) = -A006351(n) otherwise. E.g., umbrally, (b.+c.)^2 = b_2*c_0 + 2 b_1*c_1 + b_0*c_2 =0. - Tom Copeland, Oct 19 2011
a(n) = Sum_{k=1..n-1} (n+k-1)!*Sum_{j=1..k} (1/(k-j)!)*Sum_{i=0..j} 2^i*(-1)^i*Stirling2(n+j-i-1, j-i)/((n+j-i-1)!*i!), n>1, a(0)=0, a(1)=1. - Vladimir Kruchinin, Jan 28 2012
Using L. Comtet's identity and D. Wasserman's explicit formula for the associated Stirling numbers of second kind (A008299) one gets: a(n) = Sum_{m=1..n-1} Sum_{i=0..m} (-1)^i * binomial(n+m-1,i) * Sum_{j=0..m-i} (-1)^j * ((m-i-j)^(n+m-1-i))/(j! * (m-i-j)!). - Peter Regner, Oct 08 2012
G.f.: x/Q(0), where Q(k) = 1 - k*x - x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 01 2013
G.f.: x*Q(0), where Q(k) = 1 - x*(k+1)/(x*(k+1) - (1-k*x)*(1-x-k*x)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 11 2013
a(n) ~ n^(n-1) / (sqrt(2) * exp(n) * (2*log(2)-1)^(n-1/2)). - Vaclav Kotesovec, Jan 05 2014
E.g.f. A(x) satisfies d/dx A(x) = 1 / (1 + x - 2 * A(x)). - Michael Somos, Oct 25 2014
O.g.f.: Sum_{n>=0} x / Product_{k=0..n} (2 - k*x). - Paul D. Hanna, Oct 27 2014
E.g.f.: (x - 1 - 2 LambertW(-exp((x-1)/2) / 2)) / 2. - Vladimir Reshetnikov, Oct 16 2015 (This e.g.f. is given in A135494, the entry alluded to in my 2008 formula, and in A134991 along with its compositional inverse. - Tom Copeland, Jan 24 2018)
a(0) = 0, a(1) = 1; a(n) = n! * [x^n] exp(Sum_{k=1..n-1} a(k)*x^k/k!). - Ilya Gutkovskiy, Oct 17 2017
a(n+1) = Sum_{k=0..n} A269939(n, k) for n >= 1. - Peter Luschny, Feb 15 2021
Extensions
Name edited by Gus Wiseman, Dec 28 2019
Comments