A133618 Unique sequence of digits a(0), a(1), a(2), ... such that for all k >= 2, the number A(k) := Sum_{n = 0..k-1} a(n)*10^n satisfies 8^A(k) == A(k) (mod 10^k).
6, 5, 8, 5, 2, 2, 5, 9, 8, 6, 1, 4, 5, 3, 0, 7, 7, 5, 1, 2, 5, 1, 8, 0, 0, 1, 5, 8, 8, 5, 5, 9, 0, 2, 6, 1, 3, 9, 1, 1, 5, 6, 2, 9, 8, 3, 7, 7, 2, 0, 1, 5, 7, 3, 8, 8, 2, 6, 6, 7, 0, 3, 7, 5, 7, 2, 7, 4, 2, 4, 4, 2, 4, 3, 7, 5, 8, 4, 4, 2, 2, 1, 3, 0, 8, 8, 8, 8, 7, 1, 5, 9, 1, 2, 0, 1, 6, 0, 9, 8, 0, 5, 3, 3, 1
Offset: 0
Examples
658522598614530775125180015885590261391156298377201573882667037572742442437584... 8^56 == 56 (mod 100), 8^856 == 856 (mod 1000), ...
References
- M. Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011, p. 69-78. ISBN 978-88-6178-789-6.
- Ilan Vardi, "Computational Recreations in Mathematica," Addison-Wesley Publishing Co., Redwood City, CA, 1991, pages 226-229.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 0..1024
- J. Jimenez Urroz and J. Luis A. Yebra, On the equation a^x == x (mod b^n), J. Int. Seq. 12 (2009) #09.8.8.
Crossrefs
Programs
-
Mathematica
(* Import Mmca coding for "SuperPowerMod" and "LogStar" from text file in A133612 and then *) $RecursionLimit = 2^14; f[n_] := SuperPowerMod[8, n + 1, 10^n]; Reverse@ IntegerDigits@ f@ 105 (* Robert G. Wilson v, Mar 06 2014 *)
Extensions
More terms from J. Luis A. Yebra, Dec 12 2008
Edited by N. J. A. Sloane, Dec 22 2008
a(68) onward from Robert G. Wilson v, Mar 06 2014
Comments