A339645
Triangle read by rows: T(n,k) is the number of inequivalent colorings of lone-child-avoiding rooted trees with n colored leaves using exactly k colors.
Original entry on oeis.org
1, 1, 1, 2, 3, 2, 5, 17, 12, 5, 12, 73, 95, 44, 12, 33, 369, 721, 512, 168, 33, 90, 1795, 5487, 5480, 2556, 625, 90, 261, 9192, 41945, 58990, 36711, 12306, 2342, 261, 766, 47324, 321951, 625088, 516952, 224241, 57155, 8702, 766, 2312, 249164, 2483192, 6593103, 7141755, 3965673, 1283624, 258887, 32313, 2312
Offset: 1
Triangle begins:
1;
1, 1;
2, 3, 2;
5, 17, 12, 5;
12, 73, 95, 44, 12;
33, 369, 721, 512, 168, 33;
90, 1795, 5487, 5480, 2556, 625, 90;
261, 9192, 41945, 58990, 36711, 12306, 2342, 261;
766, 47324, 321951, 625088, 516952, 224241, 57155, 8702, 766;
...
From _Gus Wiseman_, Jan 02 2021: (Start)
Non-isomorphic representatives of the 39 = 5 + 17 + 12 + 5 trees with four colored leaves:
(1111) (1112) (1123) (1234)
(1(111)) (1122) (1(123)) (1(234))
(11(11)) (1(112)) (11(23)) (12(34))
((11)(11)) (11(12)) (12(13)) ((12)(34))
(1(1(11))) (1(122)) (2(113)) (1(2(34)))
(11(22)) (23(11))
(12(11)) ((11)(23))
(12(12)) (1(1(23)))
(2(111)) ((12)(13))
((11)(12)) (1(2(13)))
(1(1(12))) (2(1(13)))
((11)(22)) (2(3(11)))
(1(1(22)))
(1(2(11)))
((12)(12))
(1(2(12)))
(2(1(11)))
(End)
The case with only one color is
A000669.
A000311 counts singleton-reduced phylogenetic trees.
A001678 counts unlabeled lone-child-avoiding rooted trees.
A005804 counts phylogenetic rooted trees with n labels.
A060356 counts labeled lone-child-avoiding rooted trees.
A141268 counts lone-child-avoiding rooted trees with leaves summing to n.
A291636 lists Matula-Goebel numbers of lone-child-avoiding rooted trees.
A316651 counts lone-child-avoiding rooted trees with normal leaves.
A316652 counts lone-child-avoiding rooted trees with strongly normal leaves.
A330465 counts inequivalent leaf-colorings of phylogenetic rooted trees.
-
\\ See link above for combinatorial species functions.
cycleIndexSeries(n)={my(v=vector(n)); v[1]=sv(1); for(n=2, #v, v[n] = polcoef( sExp(x*Ser(v[1..n])), n )); x*Ser(v)}
{my(A=InequivalentColoringsTriangle(cycleIndexSeries(10))); for(n=1, #A~, print(A[n,1..n]))}
A060356
Expansion of e.g.f.: -LambertW(-x/(1+x)).
Original entry on oeis.org
0, 1, 0, 3, 4, 65, 306, 4207, 38424, 573057, 7753510, 134046671, 2353898196, 47602871329, 1013794852266, 23751106404495, 590663769125296, 15806094859299329, 448284980183376078, 13515502344669830287
Offset: 0
From _Gus Wiseman_, Dec 31 2019: (Start)
Non-isomorphic representatives of the a(7) = 4207 trees, written as root[branches], are:
1[2,3[4,5[6,7]]]
1[2,3[4,5,6,7]]
1[2[3,4],5[6,7]]
1[2,3,4[5,6,7]]
1[2,3,4,5[6,7]]
1[2,3,4,5,6,7]
(End)
The unlabeled version is
A001678(n + 1).
The case where the root is fixed is
A108919.
Unlabeled rooted trees are counted by
A000081.
Lone-child-avoiding rooted trees with labeled leaves are
A000311.
Matula-Goebel numbers of lone-child-avoiding rooted trees are
A291636.
Singleton-reduced rooted trees are counted by
A330951.
Cf.
A000669,
A004111,
A005121,
A048816,
A292504,
A316651,
A316652,
A318231,
A318813,
A330465,
A330624.
-
List([0..20],n->Sum([1..n],k->(-1)^(n-k)*Factorial(n)/Factorial(k) *Binomial(n-1,k-1)*k^(k-1))); # Muniru A Asiru, Feb 19 2018
-
seq(coeff(series( -LambertW(-x/(1+x)), x, n+1), x, n)*n!, n = 0..20); # G. C. Greubel, Mar 16 2020
-
CoefficientList[Series[-LambertW[-x/(1+x)], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Nov 27 2012 *)
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
a[n_]:=If[n==1,1,n*Sum[Times@@a/@Length/@stn,{stn,Select[sps[Range[n-1]],Length[#]>1&]}]];
Array[a,10] (* Gus Wiseman, Dec 31 2019 *)
-
{ for (n=0, 100, f=n!; a=sum(k=1, n, (-1)^(n - k)*f/k!*binomial(n - 1, k - 1)*k^(k - 1)); write("b060356.txt", n, " ", a); ) } \\ Harry J. Smith, Jul 04 2009
-
my(x='x+O('x^20)); concat([0], Vec(serlaplace(-lambertw(-x/(1+x))))) \\ G. C. Greubel, Feb 19 2018
A050381
Number of series-reduced planted trees with n leaves of 2 colors.
Original entry on oeis.org
2, 3, 10, 40, 170, 785, 3770, 18805, 96180, 502381, 2667034, 14351775, 78096654, 429025553, 2376075922, 13252492311, 74372374366, 419651663108, 2379399524742, 13549601275893, 77460249369658, 444389519874841
Offset: 1
For n=2, the 2*a(2) = 6 elements are: A+A, A+B, B+B, A*A, A*B, B*B. - _Michael Somos_, Aug 07 2017
- Andrew Howroyd, Table of n, a(n) for n = 1..500
- David Callan, A sign-reversing involution to count labeled lone-child-avoiding trees, arXiv:1406.7784 [math.CO], (30-June-2014).
- F. Chapoton, F. Hivert, J.-C. Novelli, A set-operad of formal fractions and dendriform-like sub-operads, arXiv preprint arXiv:1307.0092 [math.CO], 2013.
- V. P. Johnson, Enumeration Results on Leaf Labeled Trees, Ph. D. Dissertation, Univ. Southern Calif., 2012. - From _N. J. A. Sloane_, Dec 22 2012
- N. J. A. Sloane, Transforms
- Gus Wiseman, Sequences counting series-reduced and lone-child-avoiding trees by number of vertices.
- Index entries for sequences related to rooted trees
Lone-child-avoiding rooted trees with n leaves are
A000669.
Lone-child-avoiding rooted trees with n vertices are
A001678.
The locally disjoint case is
A331874.
Semi-lone-child-avoiding rooted trees with n vertices are
A331934.
Matula-Goebel numbers of these trees are
A331935.
-
terms = 22;
B[x_] = x O[x]^(terms+1);
A[x_] = 1/(1 - x + B[x])^2;
Do[A[x_] = A[x]/(1 - x^k + B[x])^Coefficient[A[x], x, k] + O[x]^(terms+1) // Normal, {k, 2, terms+1}];
Join[{2}, Drop[CoefficientList[A[x], x]/2, 2]] (* Jean-François Alcover, Aug 17 2018, after Michael Somos *)
slaurte[n_]:=If[n==1,{o,{o}},Join@@Table[Union[Sort/@Tuples[slaurte/@ptn]],{ptn,Rest[IntegerPartitions[n]]}]];
Table[Length[slaurte[n]],{n,10}] (* Gus Wiseman, Feb 07 2020 *)
-
{a(n) = my(A, B); if( n<2, 2*(n>0), B = x * O(x^n); A = 1 / (1 - x + B)^2; for(k=2, n, A /= (1 - x^k + B)^polcoeff(A, k)); polcoeff(A, n)/2)}; /* Michael Somos, Aug 07 2017 */
A108919
Number of series-reduced labeled trees with n nodes.
Original entry on oeis.org
1, 0, 1, 1, 13, 51, 601, 4803, 63673, 775351, 12186061, 196158183, 3661759333, 72413918019, 1583407093633, 36916485570331, 929770285841137, 24904721121298671, 711342228666833173, 21502519995056598639, 687345492498807434461, 23135454269839313430715, 818568166383797223246601, 30357965273255025673685091
Offset: 1
Cf.
A000311,
A000669,
A001678,
A292504,
A316651,
A316652,
A318231,
A318813,
A330465,
A330624,
A352410.
-
f[n_] := Sum[(-1)^(n-k)*n!/k!*Binomial[n-1, k-1]*k^(k-1), {k, n}]/n; Table[ f[n], {n, 20}] (* Robert G. Wilson v, Jul 21 2005 *)
-
a(n) = { 1/n * sum(k=1, n, (-1)^(n-k) * binomial(n,k) * (n-1)!/(k-1)! * k^(k-1) ); } \\ Joerg Arndt, Aug 28 2014
A331934
Number of semi-lone-child-avoiding rooted trees with n unlabeled vertices.
Original entry on oeis.org
1, 1, 1, 2, 4, 7, 15, 29, 62, 129, 279, 602, 1326, 2928, 6544, 14692, 33233, 75512, 172506, 395633, 911108, 2105261, 4880535, 11346694, 26451357, 61813588, 144781303, 339820852, 799168292, 1882845298, 4443543279, 10503486112, 24864797324, 58944602767, 139918663784
Offset: 1
The a(1) = 1 through a(7) = 15 trees:
o (o) (oo) (ooo) (oooo) (ooooo) (oooooo)
(o(o)) (o(oo)) (o(ooo)) (o(oooo))
(oo(o)) (oo(oo)) (oo(ooo))
((o)(o)) (ooo(o)) (ooo(oo))
((o)(oo)) (oooo(o))
(o(o)(o)) ((o)(ooo))
(o(o(o))) ((oo)(oo))
(o(o)(oo))
(o(o(oo)))
(o(oo(o)))
(oo(o)(o))
(oo(o(o)))
((o)(o)(o))
((o)(o(o)))
(o((o)(o)))
The same trees counted by leaves are
A050381.
The locally disjoint version is
A331872.
Matula-Goebel numbers of these trees are
A331935.
Lone-child-avoiding rooted trees are
A001678.
Cf.
A000081,
A000669,
A198518,
A289501,
A291636,
A306200,
A320268,
A330465,
A330951,
A331873,
A331874,
A331933,
A331966.
-
sse[n_]:=Switch[n,1,{{}},2,{{{}}},_,Join@@Function[c,Union[Sort/@Tuples[sse/@c]]]/@Rest[IntegerPartitions[n-1]]];
Table[Length[sse[n]],{n,10}]
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
seq(n)={my(v=[1,1]); for(n=2, n-1, v=concat(v, EulerT(v)[n] - v[n])); v} \\ Andrew Howroyd, Feb 09 2020
A330470
Number of non-isomorphic series/singleton-reduced rooted trees on a multiset of size n.
Original entry on oeis.org
1, 1, 2, 7, 39, 236, 1836, 16123, 162008, 1802945, 22012335, 291290460, 4144907830, 62986968311, 1016584428612, 17344929138791, 311618472138440, 5875109147135658, 115894178676866576, 2385755803919949337, 51133201045333895149, 1138659323863266945177, 26296042933904490636133
Offset: 0
Non-isomorphic representatives of the a(4) = 39 trees, with singleton leaves (x) replaced by just x:
(1111) (1112) (1122) (1123) (1234)
(1(111)) (1(112)) (1(122)) (1(123)) (1(234))
(11(11)) (11(12)) (11(22)) (11(23)) (12(34))
((11)(11)) (12(11)) (12(12)) (12(13)) ((12)(34))
(1(1(11))) (2(111)) ((11)(22)) (2(113)) (1(2(34)))
((11)(12)) (1(1(22))) (23(11))
(1(1(12))) ((12)(12)) ((11)(23))
(1(2(11))) (1(2(12))) (1(1(23)))
(2(1(11))) ((12)(13))
(1(2(13)))
(2(1(13)))
(2(3(11)))
The case with all atoms equal or all atoms different is
A000669.
Not requiring singleton-reduction gives
A330465.
Labeled versions are
A316651 (normal orderless) and
A330471 (strongly normal).
The case where the leaves are sets is
A330626.
Cf.
A000311,
A005121,
A005804,
A141268,
A213427,
A292504,
A292505,
A318812,
A318848,
A318849,
A330467,
A330469,
A330474,
A330624.
-
\\ See links in A339645 for combinatorial species functions.
cycleIndexSeries(n)={my(v=vector(n)); v[1]=sv(1); for(n=2, #v, v[n] = polcoef( sEulerT(x*Ser(v[1..n])), n )); x*Ser(v)}
InequivalentColoringsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 11 2020
A331679
Number of lone-child-avoiding locally disjoint rooted trees whose leaves are positive integers summing to n, with no two distinct leaves directly under the same vertex.
Original entry on oeis.org
1, 2, 3, 8, 16, 48, 116, 341, 928, 2753, 7996, 24254, 73325, 226471, 702122
Offset: 1
The a(1) = 1 through a(5) = 16 trees:
1 2 3 4 5
(11) (111) (22) (11111)
(1(11)) (1111) ((11)3)
(2(11)) (1(22))
(1(111)) (2(111))
(11(11)) (1(1111))
((11)(11)) (11(111))
(1(1(11))) (111(11))
(1(2(11)))
(2(1(11)))
(1(1(111)))
(1(11)(11))
(1(11(11)))
(11(1(11)))
(1((11)(11)))
(1(1(1(11))))
The non-locally disjoint version is
A141268.
Locally disjoint trees counted by vertices are
A316473.
The case where all leaves are 1's is
A316697.
Number of trees counted by
A331678 with all atoms equal to 1.
Matula-Goebel numbers of locally disjoint rooted trees are
A316495.
Unlabeled lone-child-avoiding locally disjoint rooted trees are
A331680.
Cf.
A000081,
A000669,
A001678,
A005804,
A060356,
A300660,
A316471,
A316694,
A316696,
A319312,
A330465,
A331681.
-
disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
usot[n_]:=Prepend[Join@@Table[Select[Union[Sort/@Tuples[usot/@ptn]],disjointQ[DeleteCases[#,_?AtomQ]]&&SameQ@@Select[#,AtomQ]&],{ptn,Select[IntegerPartitions[n],Length[#]>1&]}],n];
Table[Length[usot[n]],{n,12}]
A331680
Number of lone-child-avoiding locally disjoint unlabeled rooted trees with n vertices.
Original entry on oeis.org
1, 0, 1, 1, 2, 3, 6, 9, 16, 26, 45, 72, 124, 201, 341, 561, 947, 1571, 2651, 4434, 7496, 12631, 21423, 36332, 61910, 105641, 180924, 310548, 534713, 923047
Offset: 1
The a(1) = 1 through a(9) = 16 trees (empty column indicated by dot):
o . (oo) (ooo) (oooo) (ooooo) (oooooo) (ooooooo) (oooooooo)
(o(oo)) (o(ooo)) (o(oooo)) (o(ooooo)) (o(oooooo))
(oo(oo)) (oo(ooo)) (oo(oooo)) (oo(ooooo))
(ooo(oo)) (ooo(ooo)) (ooo(oooo))
((oo)(oo)) (oooo(oo)) (oooo(ooo))
(o(o(oo))) (o(o(ooo))) (ooooo(oo))
(o(oo)(oo)) ((ooo)(ooo))
(o(oo(oo))) (o(o(oooo)))
(oo(o(oo))) (o(oo(ooo)))
(o(ooo(oo)))
(oo(o(ooo)))
(oo(oo)(oo))
(oo(oo(oo)))
(ooo(o(oo)))
(o((oo)(oo)))
(o(o(o(oo))))
The Matula-Goebel numbers of these trees are
A331871.
The non-locally disjoint version is
A001678.
These trees counted by number of leaves are
A316697.
The semi-lone-child-avoiding version is
A331872.
Cf.
A000081,
A000669,
A005804,
A060356,
A141268,
A300660,
A316471,
A316473,
A316694,
A316495,
A319312,
A330465,
A331679,
A331681,
A331683.
-
disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
strut[n_]:=If[n==1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[strut/@c]]]/@Rest[IntegerPartitions[n-1]],disjointQ]];
Table[Length[strut[n]],{n,10}]
A330467
Number of series-reduced rooted trees whose leaves are multisets whose multiset union is a strongly normal multiset of size n.
Original entry on oeis.org
1, 1, 4, 18, 154, 1614, 23733, 396190, 8066984, 183930948, 4811382339, 138718632336, 4451963556127, 155416836338920, 5920554613563841, 242873491536944706, 10725017764009207613, 505671090907469848248, 25415190929321149684700, 1354279188424092012064226
Offset: 0
The a(3) = 18 trees:
{1,1,1} {1,1,2} {1,2,3}
{{1},{1,1}} {{1},{1,2}} {{1},{2,3}}
{{1},{1},{1}} {{2},{1,1}} {{2},{1,3}}
{{1},{{1},{1}}} {{1},{1},{2}} {{3},{1,2}}
{{1},{{1},{2}}} {{1},{2},{3}}
{{2},{{1},{1}}} {{1},{{2},{3}}}
{{2},{{1},{3}}}
{{3},{{1},{2}}}
The singleton-reduced version is
A316652.
Not requiring weakly decreasing multiplicities gives
A330469.
The case where the leaves are sets is
A330625.
Cf.
A000311,
A000669,
A004114,
A005121,
A005804,
A141268,
A292504,
A292505,
A318812,
A318849,
A319312,
A330471,
A330475.
-
strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
multing[t_,n_]:=Array[(t+#-1)/#&,n,1,Times];
amemo[m_]:=amemo[m]=1+Sum[Product[multing[amemo[s[[1]]],Length[s]],{s,Split[c]}],{c,Select[mps[m],Length[#]>1&]}];
Table[Sum[amemo[m],{m,strnorm[n]}],{n,0,5}]
-
\\ See links in A339645 for combinatorial species functions.
cycleIndexSeries(n)={my(v=vector(n), p=sExp(x*sv(1) + O(x*x^n))); v[1]=sv(1); for(n=2, #v, v[n] = polcoef( sExp(x*Ser(v[1..n])), n ) + polcoef(p, n)); 1 + x*Ser(v)}
StronglyNormalLabelingsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 28 2020
A330469
Number of series-reduced rooted trees whose leaves are multisets with a total of n elements covering an initial interval of positive integers.
Original entry on oeis.org
1, 1, 4, 24, 250, 3744, 73408, 1768088, 50468854, 1664844040, 62304622320, 2607765903568, 120696071556230, 6120415124163512, 337440974546042416, 20096905939846645064, 1285779618228281270718, 87947859243850506008984, 6404472598196204610148232
Offset: 0
The a(3) = 24 trees:
(123) (122) (112) (111)
((1)(23)) ((1)(22)) ((1)(12)) ((1)(11))
((2)(13)) ((2)(12)) ((2)(11)) ((1)(1)(1))
((3)(12)) ((1)(2)(2)) ((1)(1)(2)) ((1)((1)(1)))
((1)(2)(3)) ((1)((2)(2))) ((1)((1)(2)))
((1)((2)(3))) ((2)((1)(2))) ((2)((1)(1)))
((2)((1)(3)))
((3)((1)(2)))
The singleton-reduced version is
A316651.
The strongly normal case is
A330467.
The case when leaves are sets is
A330764.
Cf.
A000311,
A000669,
A004114,
A005121,
A005804,
A141268,
A292504,
A292505,
A316652,
A318812,
A318849,
A319312,
A330625.
-
allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
multing[t_,n_]:=Array[(t+#-1)/#&,n,1,Times];
amemo[m_]:=amemo[m]=1+Sum[Product[multing[amemo[s[[1]]],Length[s]],{s,Split[c]}],{c,Select[mps[m],Length[#]>1&]}];
Table[Sum[amemo[m],{m,allnorm[n]}],{n,0,5}]
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
R(n, k)={my(v=[]); for(n=1, n, v=concat(v, EulerT(concat(v, [binomial(n+k-1, k-1)]))[n])); v}
seq(n)={concat([1], sum(k=1, n, R(n,k)*sum(r=k, n, binomial(r,k)*(-1)^(r-k))))} \\ Andrew Howroyd, Dec 29 2019
Showing 1-10 of 19 results.
Comments